Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_3_a6, author = {S. A. Korneev}, title = {The complexity of implementation of a system of~monomials in two variables by composition circuits}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {103--119}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a6/} }
TY - JOUR AU - S. A. Korneev TI - The complexity of implementation of a system of~monomials in two variables by composition circuits JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 103 EP - 119 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_3_a6/ LA - ru ID - PDM_2021_3_a6 ER -
S. A. Korneev. The complexity of implementation of a system of~monomials in two variables by composition circuits. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 103-119. http://geodesic.mathdoc.fr/item/PDM_2021_3_a6/
[1] Merekin Yu. V., “On the generation of words using the composition operation”, Diskretnyy Analiz i Issledovaniye Operatsiy. Ser. 1, 10:4 (2003), 70–78 (in Russian) | Zbl
[2] Trusevich E. N., “Complexity of certain systems of monomials in calculation by composition circuits”, Moscow University Math. Bull., 69:5 (2014), 193–197 | DOI | Zbl
[3] Korneev S. A., “On the complexity of implementation of a system of two monomials by composition curcuits”, Discr. Math. Appl., 31:2 (2021), 113–125 | Zbl
[4] Korneev S. A., “On the asymptotic behavior of Shannon-type functions characterizing the computing complexity of systems of monomials”, Uchenye Zapiski Kazanskogo Universiteta. Ser. Fiziko-Matematicheskie Nauki, 162:3 (2020), 300–311 (in Russian)
[5] Shirshov A. I., “Some algorithmic problems for Lie algebras”, Sibirskiy Matematicheskiy Zhurnal, 3 (1962), 292–296 (in Russian) | Zbl
[6] Pippenger N., “On the evaluation of powers and monomials”, SIAM J. Comput., 9:2 (1980), 230–250 | DOI | Zbl
[7] Knuth D. E., The Art of Computer Programming, v. 2, Addison-Wesley, Reading, 1969 | Zbl
[8] Kochergin V. V., “On Bellman's and Knuth's problems and their generalizations”, J. Math. Sci., 233:1 (2018), 103–124 | DOI | Zbl
[9] Brauer A., “On addition chains”, Bull. AMS, 45 (1939), 736–739 | DOI
[10] Erdos P., “Remarks on number theory, III: On addition chains”, Acta Arithmetica, 6 (1960), 77–81 | DOI | Zbl
[11] Kochergin V. V., Kochergin D. V., “Improvement of the lower bound for the complexity of exponentiation”, Prikladnaya Diskretnaya Matematika, 2017, no. 38, 119–132 (in Russian) | Zbl
[12] Schönhage A., “A lower bound for the lenght of addition chains”, Theor. Comput. Sci., 1 (1975), 1–12 | DOI | Zbl
[13] Bellman R. E., “Addition chains of vectors (Advanced problems 5125)”, Amer. Math. Monthly, 70 (1963), 765
[14] Straus E. G., “Addition chains of vectors”, Amer. Math. Monthly, 71 (1964), 806–808
[15] Yao A. C.-C., “On the evaluation of powers”, SIAM J. Computing, 5 (1976), 100–103 | DOI | Zbl
[16] Gashkov S. B., Kochergin V. V., “On addition chains of vectors, gate circuits, and the complexity of computations of powers”, Siberian Adv. Math., 4:4 (1994), 1–16 | Zbl
[17] Kochergin V. V., “On the complexity of computations of monomials and tuples of powers”, Siberian Adv. Math., 6:1 (1996), 71–86 | Zbl
[18] Kochergin V. V., “Improvement of the estimates of the computational complexity for monomials and sets of powers in Bellman's and Knuth's problems”, J. Appl. Indust. Math., 9:1 (2015), 68–82 | DOI | Zbl
[19] Kochergin V. V., “On the complexity of computing systems of monomials in two variables”, Proc. VII Int. Conf. “Diskretnye Modeli v Teorii Upravlyayushchikh Sistem” (Pokrovskoe, March 4–6, 2006), MAKS Press Publ., M., 2006, 185–190 (in Russian)
[20] Sidorenko A. F., “Complexity of additive computations of a family of integer linear forms”, Zapiski Nauchnykh Seminarov LOMI, 105, 1981, 53–61 (in Russian) | Zbl
[21] Kochergin V. V., “Asymptotics of the complexity of systems of integer linear forms for additive computations”, J. Appl. Indust. Math., 1:3 (2007), 328–342 | DOI | Zbl
[22] Kochergin V. V., “On the complexity of joint computation of three elements of a free abelian group with two generators”, Diskretnyy Analiz i Issledovaniye Operatsiy. Ser. 1, 15:2 (2008), 23–64 (in Russian) | Zbl