Algorithms for solving systems of equations over various classes of finite graphs
Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 89-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study and to solve finite systems of equations over finite undirected graphs. Equations over graphs are atomic formulas of the language ${\rm L}$ consisting of the set of constants (graph vertices), the binary vertex adjacency predicate and the equality predicate. It is proved that the problem of checking compatibility of a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ is $\mathcal{NP}$-complete. The computational complexity of the procedure for checking compatibility of a system of equations $S$ over a simple graph $\Gamma$ and the procedure for finding a general solution of this system is calculated. The computational complexity of the algorithm for solving a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ involving these procedures is $O(k^2n^{k/2+1}(k+n)^2)$ for ${n \geq 3}$. Polynomially solvable cases are distinguished: systems of equations over trees, forests, bipartite and complete bipartite graphs. Polynomial time algorithms for solving these systems with running time $O(k^2n(k+n)^2)$ are proposed.
Keywords: graph, system of equations, computational complexity.
@article{PDM_2021_3_a5,
     author = {A. V. Il'ev and V. P. Il'ev},
     title = {Algorithms for solving systems of equations over various classes of finite graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {89--102},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/}
}
TY  - JOUR
AU  - A. V. Il'ev
AU  - V. P. Il'ev
TI  - Algorithms for solving systems of equations over various classes of finite graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 89
EP  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/
LA  - ru
ID  - PDM_2021_3_a5
ER  - 
%0 Journal Article
%A A. V. Il'ev
%A V. P. Il'ev
%T Algorithms for solving systems of equations over various classes of finite graphs
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 89-102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/
%G ru
%F PDM_2021_3_a5
A. V. Il'ev; V. P. Il'ev. Algorithms for solving systems of equations over various classes of finite graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 89-102. http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/