Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_3_a5, author = {A. V. Il'ev and V. P. Il'ev}, title = {Algorithms for solving systems of equations over various classes of finite graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {89--102}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/} }
A. V. Il'ev; V. P. Il'ev. Algorithms for solving systems of equations over various classes of finite graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 89-102. http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/
[1] Matiyasevich Y. V., “Diophantineity of enumerable sets”, Doklady Akademii Nauk USSR, 191:2 (1970), 279–282 (in Russian) | Zbl
[2] Fischer M. J., Rabin M. O., “Super-exponential complexity of Presburger arithmetic”, Proc. SIAM-AMS Symp. Appl. Math., 7 (1974), 27–41
[3] Mayr E. W., Meyer A. R., “The complexity of the word problems for commutative semigroups and polynomial ideals”, Adv. Math., 46:3 (1982), 305–329 | DOI | Zbl
[4] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory of Computing, 1971, 151–158 | Zbl
[5] Daniyarova E. Y., Myasnikov A. G., Remeslennikov V. N., Algebraic Geometry over Algebraic Structures, SB RAS Publishing House, Novosibirsk, 2016, 243 pp. (in Russian)
[6] Nikitin A. Y., Rybalov A. N., “On complexity of the satisfiability problem of systems over finite posets”, Prikladnaya Diskretnaya Matematika, 2018, no. 39, 94–98 (in Russian) | Zbl
[7] Rybalov A. N., “On complexity of the existential and universal theories of finite fields”, Prikladnaya Diskretnaya Matematika, 2019, no. 45, 85–89 (in Russian) | Zbl
[8] Ilev A. V., “Decidability of universal theories and axiomatizability of hereditary classes of graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 1, 2016, 100–111 (in Russian)
[9] Ilev A. V., Remeslennikov V. N., “Study of the compatibility of systems of equations over graphs and finding their general solutions”, Vestnik Omskogo Universiteta, 2017, no. 4(86), 26–32 (in Russian)
[10] Gorbunov V. A., Algebraic Theory of Quasivarieties, Plenum, New York, 1998, 298+xii pp.
[11] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co, San Francisco, 1979, 338+x pp. | Zbl
[12] Fomin F. V., Grandoni F., Kratsch D., “A measure $\$ conquer approach for the analysis of exact algorithms”, J. ACM, 56:5 (2009), 25–32 | DOI | Zbl
[13] Van Rooij J. M. M., Nederlof J., van Dijk T. C., “Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets”, LNCS, 5757, 2009, 554–565 | Zbl