Algorithms for solving systems of equations over various classes of finite graphs
Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 89-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the paper is to study and to solve finite systems of equations over finite undirected graphs. Equations over graphs are atomic formulas of the language ${\rm L}$ consisting of the set of constants (graph vertices), the binary vertex adjacency predicate and the equality predicate. It is proved that the problem of checking compatibility of a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ is $\mathcal{NP}$-complete. The computational complexity of the procedure for checking compatibility of a system of equations $S$ over a simple graph $\Gamma$ and the procedure for finding a general solution of this system is calculated. The computational complexity of the algorithm for solving a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ involving these procedures is $O(k^2n^{k/2+1}(k+n)^2)$ for ${n \geq 3}$. Polynomially solvable cases are distinguished: systems of equations over trees, forests, bipartite and complete bipartite graphs. Polynomial time algorithms for solving these systems with running time $O(k^2n(k+n)^2)$ are proposed.
Keywords: graph, system of equations, computational complexity.
@article{PDM_2021_3_a5,
     author = {A. V. Il'ev and V. P. Il'ev},
     title = {Algorithms for solving systems of equations over various classes of finite graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {89--102},
     year = {2021},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/}
}
TY  - JOUR
AU  - A. V. Il'ev
AU  - V. P. Il'ev
TI  - Algorithms for solving systems of equations over various classes of finite graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 89
EP  - 102
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/
LA  - ru
ID  - PDM_2021_3_a5
ER  - 
%0 Journal Article
%A A. V. Il'ev
%A V. P. Il'ev
%T Algorithms for solving systems of equations over various classes of finite graphs
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 89-102
%N 3
%U http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/
%G ru
%F PDM_2021_3_a5
A. V. Il'ev; V. P. Il'ev. Algorithms for solving systems of equations over various classes of finite graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 89-102. http://geodesic.mathdoc.fr/item/PDM_2021_3_a5/

[1] Matiyasevich Y. V., “Diophantineity of enumerable sets”, Doklady Akademii Nauk USSR, 191:2 (1970), 279–282 (in Russian) | Zbl

[2] Fischer M. J., Rabin M. O., “Super-exponential complexity of Presburger arithmetic”, Proc. SIAM-AMS Symp. Appl. Math., 7 (1974), 27–41

[3] Mayr E. W., Meyer A. R., “The complexity of the word problems for commutative semigroups and polynomial ideals”, Adv. Math., 46:3 (1982), 305–329 | DOI | Zbl

[4] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory of Computing, 1971, 151–158 | Zbl

[5] Daniyarova E. Y., Myasnikov A. G., Remeslennikov V. N., Algebraic Geometry over Algebraic Structures, SB RAS Publishing House, Novosibirsk, 2016, 243 pp. (in Russian)

[6] Nikitin A. Y., Rybalov A. N., “On complexity of the satisfiability problem of systems over finite posets”, Prikladnaya Diskretnaya Matematika, 2018, no. 39, 94–98 (in Russian) | Zbl

[7] Rybalov A. N., “On complexity of the existential and universal theories of finite fields”, Prikladnaya Diskretnaya Matematika, 2019, no. 45, 85–89 (in Russian) | Zbl

[8] Ilev A. V., “Decidability of universal theories and axiomatizability of hereditary classes of graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 1, 2016, 100–111 (in Russian)

[9] Ilev A. V., Remeslennikov V. N., “Study of the compatibility of systems of equations over graphs and finding their general solutions”, Vestnik Omskogo Universiteta, 2017, no. 4(86), 26–32 (in Russian)

[10] Gorbunov V. A., Algebraic Theory of Quasivarieties, Plenum, New York, 1998, 298+xii pp.

[11] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co, San Francisco, 1979, 338+x pp. | Zbl

[12] Fomin F. V., Grandoni F., Kratsch D., “A measure $\$ conquer approach for the analysis of exact algorithms”, J. ACM, 56:5 (2009), 25–32 | DOI | Zbl

[13] Van Rooij J. M. M., Nederlof J., van Dijk T. C., “Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets”, LNCS, 5757, 2009, 554–565 | Zbl