The attackers power boundaries for traceability of~algebraic geometric codes on special curves
Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 55-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Broadcast encryption is a data distribution protocol which can prevent malefactor parties from unauthorized accessing or copying the distributed data. It is widely used in distributed storage and network data protection schemes. To block the so-called coalition attacks on the protocol, classes of error-correcting codes with special properties are used, namely $c$-FP and $c$-TA properties. We study the problem of evaluating the lower and the upper boundaries on coalition power, within which the algebraic geometry codes possess these properties. Earlier, these boundaries were calculated for single-point algebraic-geometric codes on curves of the general form. Now, we clarified these boundaries for single-point codes on curves of a special form; in particular, for codes on curves on which there are many equivalence classes after factorization by equality of the corresponding points coordinates relation.
Keywords: traceability codes, frameproof codes, algebraic geometry codes, broadcast encryption.
@article{PDM_2021_3_a3,
     author = {V. M. Deundyak and D. V. Zagumennov},
     title = {The attackers power boundaries for traceability of~algebraic geometric codes on special curves},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {55--74},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/}
}
TY  - JOUR
AU  - V. M. Deundyak
AU  - D. V. Zagumennov
TI  - The attackers power boundaries for traceability of~algebraic geometric codes on special curves
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 55
EP  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/
LA  - ru
ID  - PDM_2021_3_a3
ER  - 
%0 Journal Article
%A V. M. Deundyak
%A D. V. Zagumennov
%T The attackers power boundaries for traceability of~algebraic geometric codes on special curves
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 55-74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/
%G ru
%F PDM_2021_3_a3
V. M. Deundyak; D. V. Zagumennov. The attackers power boundaries for traceability of~algebraic geometric codes on special curves. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 55-74. http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/

[1] Fiat A. and Naor M., “Broadcast encryption”, LNCS, 773, 1994, 480–491 | Zbl

[2] Chor B., Fiat A., Naor M., “Tracing traitors”, LNCS, 839, 1994, 257–270 | Zbl

[3] Silverberg A., Staddon J., Walker J., “Applications of list decoding to tracing traitors”, IEEE Trans. Inform. Theory, 49:5 (2003), 1312–1318 | DOI | Zbl

[4] Stinson D. R., Wei R., “Combinatorial properties and constructions of traceability schemes and frameproof codes”, SIAM J. Discr. Math., 11:1 (1998), 41–53 | DOI | Zbl

[5] Staddon J. N., Stinson D. R., and Wei R., “Combinatorial properties of frameproof and traceability codes”, IEEE Trans. Inform. Theory, 47:3 (2001), 1042–1049 | DOI | Zbl

[6] Zagumennov D. V., Mkrtichyan V. V., “On application of algebraic geometry codes of $L$-construction in copy protection”, Prikladnaya Diskretnaya Matematika, 2019, no. 44, 67–93 (in Russian) | Zbl

[7] Deundyak V. M., Mkrtichyan V. V., “Research of applying bounds of the information protection scheme based on PS-codes”, Diskretn. Anal. Issled. Oper., 18:3 (2011), 21–38 (in Russian) | Zbl

[8] Ma Y., Ding Y., “Reed — Solomon codes as traceability codes with an efficient tracing algorithm”, 8th Intern. Conf. Signal Processing (Guilin, China, 2006), v. 4 https://ieeexplore.ieee.org/document/4129649

[9] Guruswami V., Sudan M., “Improved decoding of Reed-Solomon and algebraic-geometric codes”, Foundations of Computer Science, IEEE, Palo Alto, 1998, 28–37

[10] Fernandez M., Cotrina J., Soriano M., Domingo N., “A note about the traceability properties of linear codes”, LNCS, 4817, 2007, 251–258 | Zbl

[11] Deundyak V. M., Evpak S. A., Mkrtichyan V. V., “Analysis of properties of $q$-ary Reed — Muller error-correcting codes viewed as codes for copyright protection”, Problems Inform. Transmission, 51:4 (2015), 398–408 | DOI | Zbl

[12] Pellikaan R., Wu X-W., “List decoding of $q$-ary Reed — Muller codes”, IEEE Trans. Inform. Theory, 50:4 (2004), 679–682 | DOI | Zbl

[13] Deundyak V. M., Zagumennov D. V., “On the properties of algebraic geometric codes as copy protection codes”, Modelirovanie i Analiz Informatsionnykh Sistem, 27:1 (2020), 22–38 (in Russian)

[14] Barg A., Kabatiansky G., “A class of I.P.P. codes with efficient identification”, J. Complexity, 20:2–3 (2004), 137–147 | DOI | Zbl

[15] Zagumennov D., Deundyak V., Gufan A., Mkrtichan V., “Algebraic geometry codes for special broadcast encryption schemes in telecommunication nets”, Proc. MWENT (Moscow, Russia, 2020), 1–6

[16] Kabatyansky G. A., “Traceability codes and their generalizations”, Problems Inform. Transmission, 55:3 (2019), 283–294 | DOI | Zbl

[17] Moreira J., Fernandez M., Soriano M., “On the relationship between the traceability properties of Reed — Solomon codes”, Adv. Math. Commun., 6:4 (2012), 467–478 | DOI | Zbl

[18] Fernandez M., “Codes with traceability properties and the Silverberg — Staddon — Walker conjecture”, XVI Intern. Symp. “Problems of Redundancy in Information and Control Systems”, Plenary lecture (Moscow, Russia, 2019)

[19] Safavi-Naini R., Wang Y., “New results on frame-proof codes and traceability schemes”, IEEE Trans. Inform. Theory, 47:7 (2001), 3029–3033 | DOI | Zbl

[20] Ge G., Shangguan Ch., Good traceability codes do exist, arXiv: 1601.04810v1

[21] Ge G., Ma J., Shangguan Ch., New results for traitor tracing schemes, arXiv: 1610.07719

[22] Chee Y. M., Zhang X., “Improved constructions of frameproof codes”, IEEE Trans. Inform. Theory, 58:8 (2012), 5449–5453 | DOI | Zbl

[23] Noskov I., Bezzateev S., “Traceability schemes usings finite geometry”, 10th Intern. Congress ICUMT (Moscow, Russia, 2018), 1–5

[24] Tsfasman M. A, Vleduts S. G., Nogin D. Yu., Algebraic Geometric Codes. Basic Notions, MCCME Publ., M., 2003 (in Russian)

[25] Hoholdt T., van Lint J. H., Pellikaan R., “Algebraic geometry codes”, Handbook of Coding Theory, v. 1, eds. V. S. Pless, W. C. Huffman, R. A. Brualdi, Elsevier, Amsterdam, 1998, 871–961 | Zbl