Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_3_a3, author = {V. M. Deundyak and D. V. Zagumennov}, title = {The attackers power boundaries for traceability of~algebraic geometric codes on special curves}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {55--74}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/} }
TY - JOUR AU - V. M. Deundyak AU - D. V. Zagumennov TI - The attackers power boundaries for traceability of~algebraic geometric codes on special curves JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 55 EP - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/ LA - ru ID - PDM_2021_3_a3 ER -
V. M. Deundyak; D. V. Zagumennov. The attackers power boundaries for traceability of~algebraic geometric codes on special curves. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 55-74. http://geodesic.mathdoc.fr/item/PDM_2021_3_a3/
[1] Fiat A. and Naor M., “Broadcast encryption”, LNCS, 773, 1994, 480–491 | Zbl
[2] Chor B., Fiat A., Naor M., “Tracing traitors”, LNCS, 839, 1994, 257–270 | Zbl
[3] Silverberg A., Staddon J., Walker J., “Applications of list decoding to tracing traitors”, IEEE Trans. Inform. Theory, 49:5 (2003), 1312–1318 | DOI | Zbl
[4] Stinson D. R., Wei R., “Combinatorial properties and constructions of traceability schemes and frameproof codes”, SIAM J. Discr. Math., 11:1 (1998), 41–53 | DOI | Zbl
[5] Staddon J. N., Stinson D. R., and Wei R., “Combinatorial properties of frameproof and traceability codes”, IEEE Trans. Inform. Theory, 47:3 (2001), 1042–1049 | DOI | Zbl
[6] Zagumennov D. V., Mkrtichyan V. V., “On application of algebraic geometry codes of $L$-construction in copy protection”, Prikladnaya Diskretnaya Matematika, 2019, no. 44, 67–93 (in Russian) | Zbl
[7] Deundyak V. M., Mkrtichyan V. V., “Research of applying bounds of the information protection scheme based on PS-codes”, Diskretn. Anal. Issled. Oper., 18:3 (2011), 21–38 (in Russian) | Zbl
[8] Ma Y., Ding Y., “Reed — Solomon codes as traceability codes with an efficient tracing algorithm”, 8th Intern. Conf. Signal Processing (Guilin, China, 2006), v. 4 https://ieeexplore.ieee.org/document/4129649
[9] Guruswami V., Sudan M., “Improved decoding of Reed-Solomon and algebraic-geometric codes”, Foundations of Computer Science, IEEE, Palo Alto, 1998, 28–37
[10] Fernandez M., Cotrina J., Soriano M., Domingo N., “A note about the traceability properties of linear codes”, LNCS, 4817, 2007, 251–258 | Zbl
[11] Deundyak V. M., Evpak S. A., Mkrtichyan V. V., “Analysis of properties of $q$-ary Reed — Muller error-correcting codes viewed as codes for copyright protection”, Problems Inform. Transmission, 51:4 (2015), 398–408 | DOI | Zbl
[12] Pellikaan R., Wu X-W., “List decoding of $q$-ary Reed — Muller codes”, IEEE Trans. Inform. Theory, 50:4 (2004), 679–682 | DOI | Zbl
[13] Deundyak V. M., Zagumennov D. V., “On the properties of algebraic geometric codes as copy protection codes”, Modelirovanie i Analiz Informatsionnykh Sistem, 27:1 (2020), 22–38 (in Russian)
[14] Barg A., Kabatiansky G., “A class of I.P.P. codes with efficient identification”, J. Complexity, 20:2–3 (2004), 137–147 | DOI | Zbl
[15] Zagumennov D., Deundyak V., Gufan A., Mkrtichan V., “Algebraic geometry codes for special broadcast encryption schemes in telecommunication nets”, Proc. MWENT (Moscow, Russia, 2020), 1–6
[16] Kabatyansky G. A., “Traceability codes and their generalizations”, Problems Inform. Transmission, 55:3 (2019), 283–294 | DOI | Zbl
[17] Moreira J., Fernandez M., Soriano M., “On the relationship between the traceability properties of Reed — Solomon codes”, Adv. Math. Commun., 6:4 (2012), 467–478 | DOI | Zbl
[18] Fernandez M., “Codes with traceability properties and the Silverberg — Staddon — Walker conjecture”, XVI Intern. Symp. “Problems of Redundancy in Information and Control Systems”, Plenary lecture (Moscow, Russia, 2019)
[19] Safavi-Naini R., Wang Y., “New results on frame-proof codes and traceability schemes”, IEEE Trans. Inform. Theory, 47:7 (2001), 3029–3033 | DOI | Zbl
[20] Ge G., Shangguan Ch., Good traceability codes do exist, arXiv: 1601.04810v1
[21] Ge G., Ma J., Shangguan Ch., New results for traitor tracing schemes, arXiv: 1610.07719
[22] Chee Y. M., Zhang X., “Improved constructions of frameproof codes”, IEEE Trans. Inform. Theory, 58:8 (2012), 5449–5453 | DOI | Zbl
[23] Noskov I., Bezzateev S., “Traceability schemes usings finite geometry”, 10th Intern. Congress ICUMT (Moscow, Russia, 2018), 1–5
[24] Tsfasman M. A, Vleduts S. G., Nogin D. Yu., Algebraic Geometric Codes. Basic Notions, MCCME Publ., M., 2003 (in Russian)
[25] Hoholdt T., van Lint J. H., Pellikaan R., “Algebraic geometry codes”, Handbook of Coding Theory, v. 1, eds. V. S. Pless, W. C. Huffman, R. A. Brualdi, Elsevier, Amsterdam, 1998, 871–961 | Zbl