Equations over direct powers of algebraic structures in relational languages
Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a semigroup $S$ (group $G$) we study relational equations and describe all semigroups $S$ with equationally Noetherian direct powers. It follows that any group $G$ has equationally Noetherian direct powers if we consider $G$ as an algebraic structure of a certain relational language. Further we specify the results as follows: if a direct power of a finite semigroup $S$ is equationally Noetherian, then the minimal ideal $\text{Ker}(S)$ of $S$ is a rectangular band of groups and $\text{Ker}(S)$ coincides with the set of all reducible elements.
Keywords: groups, semigroups, direct powers, equationally Noetherian algebraic structures.
Mots-clés : relations
@article{PDM_2021_3_a0,
     author = {A. Shevlyakov},
     title = {Equations over direct powers of algebraic structures in relational languages},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--11},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a0/}
}
TY  - JOUR
AU  - A. Shevlyakov
TI  - Equations over direct powers of algebraic structures in relational languages
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 5
EP  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_3_a0/
LA  - en
ID  - PDM_2021_3_a0
ER  - 
%0 Journal Article
%A A. Shevlyakov
%T Equations over direct powers of algebraic structures in relational languages
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 5-11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_3_a0/
%G en
%F PDM_2021_3_a0
A. Shevlyakov. Equations over direct powers of algebraic structures in relational languages. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 5-11. http://geodesic.mathdoc.fr/item/PDM_2021_3_a0/

[1] Shevlyakov A. N., “Algebraic geometry over groups in predicate language”, Herald of Omsk University, 24:4 (2018), 60–63

[2] Shevlyakov A. N., Shahryari M., “Direct products, varieties, and compactness conditions”, Groups Complexity Cryptology, 9:2 (2017), 159–166 | Zbl

[3] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., “Algebraic geometry over algebraic structures, II: Foundations”, J. Math. Sci., 183 (2012), 389–416 | DOI

[4] Lyapin E. S., Semigroups, Translations Math. Monographs, 3, Amer. Math. Soc., 1974, 519 pp. | Zbl