Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_2_a7, author = {P. A. Myshkis and A. G. Tatashev and M. V. Yashina}, title = {Discrete closed one-particle chain of contours}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {114--125}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a7/} }
P. A. Myshkis; A. G. Tatashev; M. V. Yashina. Discrete closed one-particle chain of contours. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 114-125. http://geodesic.mathdoc.fr/item/PDM_2021_2_a7/
[1] Kozlov V. V., Buslaev A. P., Tatashev A. G., “On synergy of totally connected flows on chainmails”, Proc. Intern. Conf. CMMSE, v. 3, 2013, 861–874
[2] Buslaev A. P., Tatashev A. G., “Spectra of local cluster flows on open chain of contours”, Europ. J. Pure Appl. Math., 11:3 (2018), 628–641
[3] Blank M. L., “Exact analysis of dynamical systems arising in models of traffic flow”, Russian Math. Surveys, 55:3 (2000), 562–563
[4] Belitsky V., Ferrari P. A., “Invariant measures and convergence properties for cellular automation 184 and related processes”, J. Stat. Phys., 118:3/4 (2005), 589–623
[5] Biham O., Middleton A. A., Levine D., “Self-organization and a dynamic transition in traffic-flow models”, Phys. Rev. A, 46:10 (1992), R6124–R6127
[6] D'Souza R. M., “Coexisting pases and lattice dependence of a cellular automaton model for traffic flow”, Phys. Rev. E, 71:6 (2005), 066112
[7] Angel O., Horloyd A. E., Martin J. B., “The jammed phase of the Biham — Middelton — Levine traffic model”, Elec. Commun. Probability, 10 (2005)
[8] Austin D., Benjamini I., For what number of cars must self organization occur in the Biham — Middleton — Levine traffic model from any possible starting configuration?, 2006, arXiv: math/0607759
[9] Bugaev A. S., Buslaev A. P., Kozlov V. V., Yashina M. V., “Distributed problems of monitoring and modern approaches to traffic modeling”, 14th Intern. IEEE Conf. ITSC, 2011, 477–481
[10] Buslaev A. P., Tatashev A. G., “Spectra of local cluster flows on open chain of contours”, 7th Intern. Conf. ICCMA, 2019, 283–288
[11] Kozlov V. V., Buslaev A. P., Tatashev A. G., “Monotonic walks on a necklace and a coloured dynamic vector”, Int. J. Comput. Math., 92:9 (2015), 1910–1920
[12] Buslaev A. P., Tatashev A. G., Yashina M. V., “Flows spectrum on closed trio of contours”, Europ. J. Pure Appl. Math., 11:1 (2018), 260–283
[13] Buslaev A. P., Fomina M. Yu., Tatashev A. G., Yashina M. V., “On discrete flow networks model spectra: statement, simulation, hypotheses”, J. Physics: Conf. Ser., 1053 (2018), 012034, 1–7
[14] Tatashev A. G., Yashina M. V., “Spectrum of elementary cellular automata and closed chains of contours”, Machines, 7:2 (2019), 28
[15] Zharkova A. V., “On number of inaccessible states in finite dynamic systems of complete graphs orientations”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2020, no. 13, 100–103 (in Russian)