The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$
Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2015, the results were obtained for the maximum number of vertices $ n_k $ in regular graphs of a given order $ k $ with a diameter $2$: $n_2 = 5$, $n_3 = 10$, $n_4 = 15$. In this paper, we investigate a similar question about the largest number of vertices $ np_k $ in a primitive regular graph of order $ k $ with exponent $2$. All primitive regular graphs with exponent $2$, except for the complete one, also have diameter $d =2 $. The following values were obtained for primitive regular graphs with exponent $2$: $np_2 = 3$, $np_3 = 4$, $np_4 = 11$.
Keywords: primitive graph, exponent, regular graph.
Mots-clés : primitive matrix
@article{PDM_2021_2_a5,
     author = {M. B. Abrosimov and S. V. Kostin and I. V. Los},
     title = {The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {97--104},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - S. V. Kostin
AU  - I. V. Los
TI  - The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 97
EP  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/
LA  - ru
ID  - PDM_2021_2_a5
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A S. V. Kostin
%A I. V. Los
%T The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 97-104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/
%G ru
%F PDM_2021_2_a5
M. B. Abrosimov; S. V. Kostin; I. V. Los. The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 97-104. http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/

[1] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648

[2] Sachkov V. N., Oshkin I. B., “Exponents of classes of non-negative matrices”, Diskretnaya Matematika, 1993, no. 2, 150–159 (in Russian)

[3] Salii V. N., “Minimal primitive extensions of oriented graphs”, Prikladnaya Diskretnaya Matematika, 2008, no. 1(1), 116–119 (in Russian)

[4] Fomichev V. M., “The estimates of exponents for primitive graphs”, Prikladnaya Diskretnaya Matematika, 2011, no. 2(11), 101–112 (in Russian)

[5] Fomichev V. M., Avezova Ya. E., “The exact formula for the exponents of the mixing digraphs of register transformations”, J. Appl. Ind. Math., 2020, no. 14, 308–320

[6] Jin M., Lee S. G., Seol H. G., “Exponents of $r$-regular primitive matrices”, Inform. Center Math. Sci., 6:2 (2003), 51–57

[7] Bueno M. I., Furtado S., “On the exponent of $r$-regular primitive matrices”, ELA. Electronic J. Linear Algebra, 17 (2008), 28–47

[8] Kim B., Song B., Hwang W., “Nonnegative primitive matrices with exponent 2”, Linear Algebra Appl., 2005, no. 407, 162–168

[9] Hoa V. D., Do M. T., “$k$-Regular graph with diameter 2”, Int. J. Adv. Comput. Technol., 4:5 (2015), 14–19

[10] Los' I. V., Abrosimov M. B., Kostin S. V., “On the question of primitive regular graphs with exponent equals to 2 and 3”, Komp'yuternye Nauki i Informatsionnye Tekhnologii, Nauka Publ., Saratov, 2018, 251–253 (in Russian)

[11] Kostin S. V., “On the use of graph theory problems for the intellectual development of students”, Matematika v Obrazovanii, ed. I. S. Emel'yanova, Chuvash University Publ., Cheboksary, 2014, 68–74 (in Russian)