The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$
Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 97-104
Voir la notice de l'article provenant de la source Math-Net.Ru
In 2015, the results were obtained for the maximum number of vertices $ n_k $ in regular graphs of a given order $ k $ with a diameter $2$: $n_2 = 5$, $n_3 = 10$, $n_4 = 15$. In this paper, we investigate a similar question about the largest number of vertices $ np_k $ in a primitive regular graph of order $ k $ with exponent $2$. All primitive regular graphs with exponent $2$, except for the complete one, also have diameter $d =2 $. The following values were obtained for primitive regular graphs with exponent $2$: $np_2 = 3$, $np_3 = 4$, $np_4 = 11$.
Keywords:
primitive graph, exponent, regular graph.
Mots-clés : primitive matrix
Mots-clés : primitive matrix
@article{PDM_2021_2_a5,
author = {M. B. Abrosimov and S. V. Kostin and I. V. Los},
title = {The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {97--104},
publisher = {mathdoc},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/}
}
TY - JOUR AU - M. B. Abrosimov AU - S. V. Kostin AU - I. V. Los TI - The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$ JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 97 EP - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/ LA - ru ID - PDM_2021_2_a5 ER -
%0 Journal Article %A M. B. Abrosimov %A S. V. Kostin %A I. V. Los %T The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$ %J Prikladnaâ diskretnaâ matematika %D 2021 %P 97-104 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/ %G ru %F PDM_2021_2_a5
M. B. Abrosimov; S. V. Kostin; I. V. Los. The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent~$2$. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 97-104. http://geodesic.mathdoc.fr/item/PDM_2021_2_a5/