Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_2_a3, author = {D. G. Bukhanov and V. M. Polyakov and M. A. Redkina}, title = {Detection of malware using an artificial neural network based on adaptive resonant theory}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {69--82}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a3/} }
TY - JOUR AU - D. G. Bukhanov AU - V. M. Polyakov AU - M. A. Redkina TI - Detection of malware using an artificial neural network based on adaptive resonant theory JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 69 EP - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_2_a3/ LA - ru ID - PDM_2021_2_a3 ER -
%0 Journal Article %A D. G. Bukhanov %A V. M. Polyakov %A M. A. Redkina %T Detection of malware using an artificial neural network based on adaptive resonant theory %J Prikladnaâ diskretnaâ matematika %D 2021 %P 69-82 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2021_2_a3/ %G ru %F PDM_2021_2_a3
D. G. Bukhanov; V. M. Polyakov; M. A. Redkina. Detection of malware using an artificial neural network based on adaptive resonant theory. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 69-82. http://geodesic.mathdoc.fr/item/PDM_2021_2_a3/
[1] How much does a cyberattack cost companies, , 2017 https://opendatasecurity.io/how-much-does-a-cyberattack-cost-companies/
[2] Salahdine F., Kaabouch N., “Social Engineering Attacks: A Survey”, Future Internet, 11 (2019) https://www.mdpi.com/1999-5903/11/4/89/htm
[3] , 2018 https://www.kaspersky.ru/blog/economics-report-2018/20655/
[4] Harchenko S. S., Davydova E. M., Timchenko S. V., “Signature analysis of program code”, Polzunovskiy Vestnik, 2012, no. 3, 60–64 (in Russian)
[5] Babak B. R., Maslin M., Suhaimi I., “Camouflage in malware: from encryption to metamorphism”, Intern. J. Computer Science and Network Security, 12 (2012), 74–83
[6] Cai H., Shao Z., Vaynberg A., Certified Self-Modifying Code (extended version coq implementation), Technical Report YALEU/DCS/TR-1379, 2007
[7] Wei Y., Zheng Z., Nirwan A., “Revealing packed malware”, IEEE Security Privacy, 6:5 (2008), 65–69
[8] Jacob G., Comparetti P. M., Neugschwandtner M., et al., “A static, packer-agnostic filter to detect similar malware samples”, LNCS, 7591, 2013, 102–122
[9] Linn C., Debray S., “Obfuscation of executable code to improve resistance to static disassembly”, Proc. CCS'03 (Washington, USA, 2003), 290–299
[10] Golovkin M., Systems and methods for detecting obfuscated malware, Patent U.S. 9087195, 2015
[11] Solomon I. A., Jatain A., Bajaj S. B., “Neural network based intrusion detection: State of the art”, Proc. Intern. Conf. SUSCOM (Amity University Rajasthan, Jaipur-India, February 26–28, 2019)
[12] Bonfante G., Kaczmarek M., Marion J., “On abstract computer virology from a recursion theoretic perspective”, J. Computer Virology, 5:3 (2009), 263–270
[13] Narayanan A., Chandramohan M., Chen L., et al., Subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs, 2016, arXiv: 1606.08928
[14] Burnap P., French R., Turner F., Jones K., “Malware classification using self organising feature maps and machine activity data”, Computers Security, 73 (2018), 399–410
[15] Ahmed F., Hameed H., Shafiq M. Z., Farooq M., “Using spatio-temporal information in API calls with machine learning algorithms for malware detection”, Proc. AISec'09 (Chicago, Illinois, USA, 2009), 55–62
[16] Carpenter G. A., Grossberg S., “ART 2: self-organization of stable category recognition codes for analog input patterns”, Appl. Opt., 26:23 (1987), 4919–4930
[17] Kurmangaleev SH. F., Dolgorukova K. YU., Savchenko V. V., et al., “About methods of programs deobfuscation”, Proc. Ivannikov Institute for System Programming of the RAS, 24 (2013), 145–160 (in Russian)
[18] Bukhanov D. G., Polyakov V. M., “Adaptive resonance theory network with multilevel memory”, Nauchnye Vedomosti BelSU, 45:4 (2018), 709–717 (in Russian)