On the nonexistence of certain orthogonal arrays of strength four
Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that no orthogonal arrays $OA(16 \lambda, 11, 2,4)$ exist with $\lambda=6$ and $7$. This solves an open problem of the NSUCRYPTO Olympiad 2018. Our result allows to determine the minimum weights of certain higher order correlation-immune Boolean functions.
Keywords: orthogonal array
Mots-clés : NSUCRYPTO.
@article{PDM_2021_2_a2,
     author = {R. Kiss and G. P. Nagy},
     title = {On the nonexistence of certain orthogonal arrays of strength four},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {65--68},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/}
}
TY  - JOUR
AU  - R. Kiss
AU  - G. P. Nagy
TI  - On the nonexistence of certain orthogonal arrays of strength four
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 65
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/
LA  - en
ID  - PDM_2021_2_a2
ER  - 
%0 Journal Article
%A R. Kiss
%A G. P. Nagy
%T On the nonexistence of certain orthogonal arrays of strength four
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 65-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/
%G en
%F PDM_2021_2_a2
R. Kiss; G. P. Nagy. On the nonexistence of certain orthogonal arrays of strength four. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68. http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/