On the nonexistence of certain orthogonal arrays of strength four
Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that no orthogonal arrays $OA(16 \lambda, 11, 2,4)$ exist with $\lambda=6$ and $7$. This solves an open problem of the NSUCRYPTO Olympiad 2018. Our result allows to determine the minimum weights of certain higher order correlation-immune Boolean functions.
Keywords: orthogonal array
Mots-clés : NSUCRYPTO.
@article{PDM_2021_2_a2,
     author = {R. Kiss and G. P. Nagy},
     title = {On the nonexistence of certain orthogonal arrays of strength four},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {65--68},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/}
}
TY  - JOUR
AU  - R. Kiss
AU  - G. P. Nagy
TI  - On the nonexistence of certain orthogonal arrays of strength four
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 65
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/
LA  - en
ID  - PDM_2021_2_a2
ER  - 
%0 Journal Article
%A R. Kiss
%A G. P. Nagy
%T On the nonexistence of certain orthogonal arrays of strength four
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 65-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/
%G en
%F PDM_2021_2_a2
R. Kiss; G. P. Nagy. On the nonexistence of certain orthogonal arrays of strength four. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68. http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/

[1] Gorodilova A., Agievich S., Carlet C., et al., “The Fifth International Students' Olympiad in cryptography — NSUCRYPTO: Problems and their solutions”, Cryptologia, 44:3 (2020), 223–256

[2] NSUCRYPTO Unsolved problems, , 2020 www.nsucrypto.nsu.ru/unsolved-problems/

[3] Hedayat A. S., Sloane N. J. A., Stufken J., Orthogonal Arrays: Theory and Applications, Springer Verlag, N.Y., 1999

[4] Carlet C., Chen X., “Constructing low-weight $d$th-order correlation-immune Boolean functions through the Fourier — Hadamard transform”, IEEE Trans. Inform. Theory, 64:4 (2018), 2969–2978

[5] Carlet C., Guilley S., “Correlation-immune Boolean functions for easing counter measures to side-channel attacks”, Algebraic Curves and Finite Fields Cryptography and Other Applications, Ch. 3, Radon Series on Computational and Applied Mathematics, 16, eds. H. Niederreiter, A. Ostafe, D. Panario, A. Winterhof, De Gruyter, Berlin, 2014, 41–70

[6] Bulutoglu D. A., Margot F., “Classification of orthogonal arrays by integer programming”, J. Statistical Planning Inference, 138:3 (2008), 654–666

[7] Schoen E. D., Eendebak P. T., Nguyen M. V. M., “Complete enumeration of pure-level and mixed-level orthogonal arrays”, J. Combinat. Designs, 18:2 (2009), 123–140

[8] Schoen E. D., Eendebak P. T., Nguyen M. V. M., “Correction to: Complete enumeration of pure-level and mixed-level orthogonal arrays”, J. Combinat. Designs, 18:6 (2010), 488–488

[9] Eendebak P., Complete series of non-isomorphic orthogonal arrays, , 2020 www.pietereendebak.nl/oapackage/series.html

[10] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1), , 2020 www.sagemath.org

[11] Makhorin A., Gnu linear programming kit, , 2020 www.gnu.org/software/glpk/

[12] Gamrath G., Anderson D., Bestuzheva K., et al., The SCIP Optimization Suite 7.0, , 2020 www.optimization-online.org/DB_HTML/2020/03/7705.html

[13] Bierbrauer J., “Nordstrom — Robinson code and $A_7$-geometry”, Finite Fields and Their Appl., 13:1 (2007), 158–170

[14] Sloane N. J. A., A Library of Orthogonal Arrays, , 2020 www.neilsloane.com/oadir/