On the nonexistence of certain orthogonal arrays of strength four
Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that no orthogonal arrays $OA(16 \lambda, 11, 2,4)$ exist with $\lambda=6$ and $7$. This solves an open problem of the NSUCRYPTO Olympiad 2018. Our result allows to determine the minimum weights of certain higher order correlation-immune Boolean functions.
Keywords:
orthogonal array
Mots-clés : NSUCRYPTO.
Mots-clés : NSUCRYPTO.
@article{PDM_2021_2_a2,
author = {R. Kiss and G. P. Nagy},
title = {On the nonexistence of certain orthogonal arrays of strength four},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {65--68},
publisher = {mathdoc},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/}
}
R. Kiss; G. P. Nagy. On the nonexistence of certain orthogonal arrays of strength four. Prikladnaâ diskretnaâ matematika, no. 2 (2021), pp. 65-68. http://geodesic.mathdoc.fr/item/PDM_2021_2_a2/