Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_1_a3, author = {E. A. Shliakhtina and D. Yu. Gamayunov}, title = {Group authentication scheme based~on~zero-knowledge~proof}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {68--84}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_1_a3/} }
E. A. Shliakhtina; D. Yu. Gamayunov. Group authentication scheme based~on~zero-knowledge~proof. Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 68-84. http://geodesic.mathdoc.fr/item/PDM_2021_1_a3/
[1] M. V. Korosteleva, D. Y. Gamayunov, “Protocol for secure group communications with deniability features”, Problemy Informatsionnoy Bezopasnosti. Komp'yuternyye Sistemy, 2014, no. 3, 74–79 (in Russian)
[2] I. Goldberg et al., “Multi-party off-the-record messaging”, Proc. 16th Conf. Computer Commun. Security, ACM, 2009, 358–368
[3] V. F. Sheidaev, D. Y. Gamayunov, “Deniable group communications in the presence of global unlimited advisory”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 72–86 (in Russian) | MR | Zbl
[4] Moscow State University Seclab mpOTR, https://bitbucket.org/Enr1g/p2p_mpotr.js
[5] K. K. Nguen, Zero-knowledge proof based authenticathion for group chat users, Graduation Project, MSU, M., 2018 (in Russian)
[6] F. Boudot, B. Schoenmakers, J. Traore, “A fair and efficient solution to the socialist millionaires' problem”, Discr. Appl. Math., 111:1 (2001), 23–36 | DOI | MR | Zbl
[7] M. Manulis, “Democratic group signatures: on an example of joint ventures”, Proc. 2006 ACM Symp. Inform. Comput. Commun. Security, 2006, 365
[8] Real-time communication for the web, https://webrtc.org/
[9] I. Stoica et al., “Chord: A scalable peer-to-peer lookup service for internet applications”, ACM SIGCOMM Comput. Commun. Rev., 31:4 (2001), 149–160 | DOI
[10] J. Alves-Foss, “An efficient secure authenticated group key exchange algorithm for large and dynamic groups”, Proc. 23rd National Inform. Systems Security Conf., 2000, 254–266
[11] Y. Kim, A. Perrig, G. Tsudik, “Communication-efficient group key agreement”, IFIP Intern. Inform. Security Conf., Springer, Boston, MA, 2001, 229–244
[12] Y. Kim, A. Perrig, G. Tsudik, “Group key agreement efficient in communication”, IEEE Trans. Computers, 53:7 (2004), 905–921 | DOI
[13] S. Zheng, D. Manz, J. Alves-Foss, “A communication-computation efficient group key algorithm for large and dynamic groups”, Computer Networks, 51:1 (2007), 69–93 | DOI | Zbl
[14] J. Camenisch, M. Stadler, “Efficient group signature schemes for large groups”, Ann. Intern. Cryptology Conf., Springer, Berlin–Heidelberg, 1997, 410–424 | Zbl
[15] A. Fiat, A. Shamir, “How to prove yourself: Practical solutions to identification and signature problems”, Conf. Theory Appl. Cryptogr. Techniques, Springer, Berlin–Heidelberg, 1986, 186–194 | MR
[16] D. Boneh, X. Boyen, H. Shacham, “Short group signatures”, Ann. Intern. Cryptology Conf., Springer, Berlin–Heidelberg, 2004, 41–55 | MR | Zbl
[17] Chain of groups method realisation for decentralized chat
[18] J. Leskovec, E. Horvitz, “Planetary-scale views on an instant-messaging network”, Proc. 17th Intern. Conf. World Wide Web, 2008, 915–924
[19] J. Ugander et al, The anatomy of the facebook social graph, 2011, arXiv: 1111.4503
[20] Three and a half degrees of separation – Facebook Research, , 2016 https://research.fb.com/blog/2016/02/three-and-a-half-degrees-of-separation/