An algorithm for computing the Stickelberger ideal for multiquadratic number fields
Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 9-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm for computing the Stickelberger ideal for multiquadratic fields $K=\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2},\ldots,\sqrt{d_n})$, where the integers $d_i \equiv 1 \bmod 4$ for $i \in \{1, \ldots, n\} $ or $d_j \equiv 2 \bmod 8$ for one $j \in \{1, \ldots, n \}$; all $d_i$'s are pairwise co-prime and square-free. Our result is based on the paper of Kučera [J. Number Theory, no. 56, 1996]. The algorithm we present works in time $\mathcal{O}(\lg \Delta_K \cdot 2^n \cdot \mathrm{poly}(n) )$, where $\Delta_K$ is the discriminant of $K$. As an interesting application, we show a connection between Stickelberger ideal and the class number of a multiquadratic field.
Keywords: multiquadratic number field, Stickelberger element, Stickelberger ideal, class group of multiquadratic field.
@article{PDM_2021_1_a1,
     author = {E. A. Kirshanova and E. S. Malygina and S. A. Novoselov and D. O. Olefirenko},
     title = {An algorithm for computing the {Stickelberger} ideal for multiquadratic number fields},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {9--30},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/}
}
TY  - JOUR
AU  - E. A. Kirshanova
AU  - E. S. Malygina
AU  - S. A. Novoselov
AU  - D. O. Olefirenko
TI  - An algorithm for computing the Stickelberger ideal for multiquadratic number fields
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 9
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/
LA  - ru
ID  - PDM_2021_1_a1
ER  - 
%0 Journal Article
%A E. A. Kirshanova
%A E. S. Malygina
%A S. A. Novoselov
%A D. O. Olefirenko
%T An algorithm for computing the Stickelberger ideal for multiquadratic number fields
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 9-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/
%G ru
%F PDM_2021_1_a1
E. A. Kirshanova; E. S. Malygina; S. A. Novoselov; D. O. Olefirenko. An algorithm for computing the Stickelberger ideal for multiquadratic number fields. Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 9-30. http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/