An algorithm for computing the Stickelberger ideal for multiquadratic number fields
Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 9-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an algorithm for computing the Stickelberger ideal for multiquadratic fields $K=\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2},\ldots,\sqrt{d_n})$, where the integers $d_i \equiv 1 \bmod 4$ for $i \in \{1, \ldots, n\} $ or $d_j \equiv 2 \bmod 8$ for one $j \in \{1, \ldots, n \}$; all $d_i$'s are pairwise co-prime and square-free. Our result is based on the paper of Kučera [J. Number Theory, no. 56, 1996]. The algorithm we present works in time $\mathcal{O}(\lg \Delta_K \cdot 2^n \cdot \mathrm{poly}(n) )$, where $\Delta_K$ is the discriminant of $K$. As an interesting application, we show a connection between Stickelberger ideal and the class number of a multiquadratic field.
Keywords:
multiquadratic number field, Stickelberger element, Stickelberger ideal, class group of multiquadratic field.
@article{PDM_2021_1_a1,
author = {E. A. Kirshanova and E. S. Malygina and S. A. Novoselov and D. O. Olefirenko},
title = {An algorithm for computing the {Stickelberger} ideal for multiquadratic number fields},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {9--30},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/}
}
TY - JOUR AU - E. A. Kirshanova AU - E. S. Malygina AU - S. A. Novoselov AU - D. O. Olefirenko TI - An algorithm for computing the Stickelberger ideal for multiquadratic number fields JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 9 EP - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/ LA - ru ID - PDM_2021_1_a1 ER -
%0 Journal Article %A E. A. Kirshanova %A E. S. Malygina %A S. A. Novoselov %A D. O. Olefirenko %T An algorithm for computing the Stickelberger ideal for multiquadratic number fields %J Prikladnaâ diskretnaâ matematika %D 2021 %P 9-30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/ %G ru %F PDM_2021_1_a1
E. A. Kirshanova; E. S. Malygina; S. A. Novoselov; D. O. Olefirenko. An algorithm for computing the Stickelberger ideal for multiquadratic number fields. Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 9-30. http://geodesic.mathdoc.fr/item/PDM_2021_1_a1/