On generic complexity of the subset sum problem for~semigroups of~integer matrices
Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp, and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. The subset sum problem is a classic combinatorial problem that has been studied for many decades. Myasnikov, Nikolaev and Ushakov in 2015 introduced an analogue of this problem for arbitrary groups (semigroups). For some classes of groups, such as hyperbolic and nilpotent groups, this problem is solvable in polynomial time. For others, for example, Baumslag — Solitaire groups, group of second order integer unimodular matrices $SL_2(\mathbb{Z})$, this problem is NP-complete. From the works of Gurevich, Kai, Fuchs, Cosen, and Liu, it follows that the subset sum problem for the group $SL_2(\mathbb{Z})$ and for the monoid $SL_2(\mathbb{N})$ is polynomially solvable for almost all inputs. In the paper, we study the generic complexity of the subset sum problem for semigroups of matrices of arbitrary order with integer non-negative elements. This problem is NP-complete, and therefore for it, provided $\text{P} \neq \text{NP} $, there is no polynomial algorithm that solves it for all inputs. We present a polynomial generic algorithm based on the dynamic programming and prove that this problem is generically solvable in polynomial time.
Keywords: generic complexity, the subset sum problem, integer matrix semigroups.
@article{PDM_2020_4_a8,
     author = {A. N. Rybalov},
     title = {On generic complexity of the subset sum problem for~semigroups of~integer matrices},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {118--126},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a8/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On generic complexity of the subset sum problem for~semigroups of~integer matrices
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 118
EP  - 126
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_4_a8/
LA  - ru
ID  - PDM_2020_4_a8
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On generic complexity of the subset sum problem for~semigroups of~integer matrices
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 118-126
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_4_a8/
%G ru
%F PDM_2020_4_a8
A. N. Rybalov. On generic complexity of the subset sum problem for~semigroups of~integer matrices. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 118-126. http://geodesic.mathdoc.fr/item/PDM_2020_4_a8/

[1] R. Karp, “Reducibility among combinatorial problems”, Complexity of Computer Computations, IBM Research Symposia Ser., eds. R.E. Miller, J.W. Thather, 1972, 85–103

[2] M. Hellman, R. Merkle, “Hiding information and signatures in trapdoor knapsacks”, IEEE Trans. Inform. Theory, 24:5 (1978), 525–530

[3] B. Chor, R. Rivest, “A knapsack-type public key cryptosystem based on arithmetic in finite fields”, IEEE Trans. Inform. Theory, 34:5 (1988), 901–909

[4] Kuzyurin N. N., “Polynomial on average algorithm in integer linear programming”, Sib. J. Operation Research, 1:3 (1994), 38–48 (in Russian)

[5] A. Miasnikov, A. Nikolaev, A. Ushakov, “Knapsack problems in groups”, Math. Comput., 84 (2015), 987–1016

[6] A. Blass, Yu. Gurevich, “Matrix transformation is complete for the average case”, SIAM J. Computing, 24:1 (1995), 24–39

[7] Yu. Gurevich, “Matrix decomposition problem is complete for the average case”, Proc. 31st Ann. Symp. Foundations of Computer Science, 1990, 802–811

[8] J. Cai, W. Fuchs, D. Kozen, Z. Liu, “Efficient average-case algorithms for the modular group”, Proc. 35th Ann. Symp. Foundations of Computer Science, 1994, 143–152

[9] J. Cai, Z. Liu, “The bounded membership problem of the monoid $SL_2(N)$”, Math. Systems Theory, 29 (1996), 573–587

[10] I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694

[11] Kargapolov M.I., Merzlyakov Yu.I., Elements of the Group Theory, Nauka Publ., M., 1982, 288 pp. (in Russian)

[12] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatshefte für Math. u. Phys., 3 (1882), 265–284