Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_4_a6, author = {L. X. Hung}, title = {The chromaticity of the join of tree and null graph}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {93--101}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/} }
L. X. Hung. The chromaticity of the join of tree and null graph. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 93-101. http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/
[1] M. Behzad, G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston, 1971
[2] G. D. Birkhoff, “A determinant formula for the number of ways of coloring a map”, Ann. Math., 14:2 (1912), 42–46
[3] K. M. Koh, K. L. Teo, “The search for chromatically unique graphs”, Graphs Combin., 1990, no. 6, 259–285
[4] C. Y. Chao, E. G. Whitehead Jr., “On chromatic equivalence of graphs”, Lecture Notes Math., 642, 1978, 121–131
[5] K. M. Koh, K. L. Teo, “The search for chromatically unique graphs II”, Discrete Math., 172 (1997), 59–78
[6] N. D. Tan, L. X. Hung, “On colorings of split graphs”, Acta Mathematica Vietnammica, 31:3 (2006), 195–204
[7] V. G. Vizing, “On an estimate of the chromatic class of a p-graph”, Discret. Analiz, 1964, no. 3, 23–30 (in Russian)
[8] V. G. Vizing, “Coloring the vertices of a graph in prescribed colors”, Diskret. Analiz, 1976, no. 29, 3–10 (in Russian)
[9] P. Erdös, A. L. Rubin, H. Taylor, “Choosability in graphs”, Proc. West Coast Conf. Combin., Graph Theory, and Computing (Arcata, CA, September), Congressus Numerantium, XXVI, 1979, 125–157
[10] L. X. Hung, “List-chromatic number and chromatically unique of the graph $K_2^r+O_k$”, Selecciones Matemáticas, Universidad Nacional de Trujillo, 06:01 (2019), 26–30
[11] L. X. Hung, “Colorings of the graph $K^m_2 + K_n$”, J. Siberian Federal University. Mathematics Physics, 13:3 (2020), 297–305
[12] R. C. Read, “An introduction to chromatic polynomials”, J. Combin. Theory, 1968, no. 4, 52–71
[13] F. Brenti, “Expansions of chromatic polynomial and log-concavity”, Trans. Amer. Math. Soc., 332 (1992), 729–756
[14] R. Y. Liu, “A new method to find the chromatic polynomial of a graph and its applications”, Kexue Tongbao, 32 (1987), 1508–1509
[15] R. Diestel, Graph Theory, Springer Verlag, N.Y., 2000
[16] M. Plantholt, “The chromatic index of graphs with a spanning star”, J. Graph Theory, 1981, no. 5, 5–13