The chromaticity of the join of tree and null graph
Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 93-101

Voir la notice de l'article provenant de la source Math-Net.Ru

The chromaticity of the graph $G$, which is join of the tree $T_p$ and the null graph $O_q$, is studied. We prove that $G$ is chromatically unique if and only if $1\le p\le 3$, $1\le q\le 2$; a graph $H$ and $T_p+O_{p-1}$ are $\chi $-equivalent if and only if $H=T^\prime _p+O_{p-1}$, where $T^\prime _p$ is a tree of order $p$; $H$ and $T_p+O_p$ are $\chi $-equivalent if and only if $H\in \{T^\prime _p+O_p, T^{\prime \prime }_{p+1}+O_{p-1}\}$, where $T^\prime _p$ is a tree of order $p$, $T^{\prime \prime }_{p+1}$ is a tree of order $p+1$. We also prove that if $p\le q$, then $\chi ^\prime (G)=ch^\prime (G)=\Delta (G)$; if $\Delta (G)=|V(G)|-1$, then $\chi ^\prime (G)=ch^\prime (G)=\Delta (G)$ if and only if $G\not= K_3$.
Keywords: chromatic number, chromatically equivalent, chromatically unique graph, chromatic index, list-chromatic index.
@article{PDM_2020_4_a6,
     author = {L. X. Hung},
     title = {The chromaticity of the join of tree and null graph},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {93--101},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/}
}
TY  - JOUR
AU  - L. X. Hung
TI  - The chromaticity of the join of tree and null graph
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 93
EP  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/
LA  - en
ID  - PDM_2020_4_a6
ER  - 
%0 Journal Article
%A L. X. Hung
%T The chromaticity of the join of tree and null graph
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 93-101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/
%G en
%F PDM_2020_4_a6
L. X. Hung. The chromaticity of the join of tree and null graph. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 93-101. http://geodesic.mathdoc.fr/item/PDM_2020_4_a6/