Enumeration of labeled Eulerian pentacyclic graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Euler graph is a connected graph in which all degrees of vertices are even numbers. A pentacyclic graph is a connected graph with $n$ vertices and $n + 4$ edges. We obtain an explicit formula for the number of labeled Euler pentacyclic graphs with a given number of vertices, and found the corresponding asymptotics for the number of such graphs with a large number of vertices. We prove that, given a uniform probability distribution, the probability that a labeled pentacyclic Euler graph is a block (cactus) is asymptotically $53/272$ ($63/272$), respectively.
Keywords: labeled graph, Eulerian graph, pentacyclic graph, block, enumeration, asymptotics, probability.
@article{PDM_2020_4_a5,
     author = {V. A. Voblyi},
     title = {Enumeration of labeled {Eulerian} pentacyclic graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Enumeration of labeled Eulerian pentacyclic graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 87
EP  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/
LA  - ru
ID  - PDM_2020_4_a5
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Enumeration of labeled Eulerian pentacyclic graphs
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 87-92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/
%G ru
%F PDM_2020_4_a5
V. A. Voblyi. Enumeration of labeled Eulerian pentacyclic graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 87-92. http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/

[1] F. Harary, E. M. Palmer, Graphical Enumeration, Academic Press, N.Y.–London, 1973

[2] A. Kumar, “A study on Euler graph and it's applications”, Int. J. Math. Trends Technol., 43:1 (2017), 9–14

[3] P. Pancoska, Z. Moravek, U. M. Moll, “Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs”, Nucleic Acids Res., 32:15 (2004), 4630–4645

[4] P. Amudha, A. C. C. Sagayaraj, A. C. S. Sheela, “An application of graph theory in cryptography”, Int. J. Pure Appl. Math., 119:13 (2018), 375–383

[5] R. C. Read, “Euler graphs on labelled nodes”, Canad. J. Math., 14 (1962), 482–486

[6] S. Tazawa, “Enumeration of labelled 2-connected Euler graphs”, J. Combinat. Inform. System Sci., 23:1–4 (1998), 407–414

[7] V. A. Voblyi, “Enumeration of labeled connected bicyclic and tricyclic Eulerian graphs”, Matematicheskie Zametki, 92:5 (2012), 678–683 (in Russian)

[8] V. A. Voblyi, A. K. Meleshko, “Enumeration of labeled Eulerian tetracyclic graphs”, Diskretn. Anal. Issled. Oper., 21:5 (2014), 17–22 (in Russian)

[9] V. A. Voblyi, “On the number of labeled Eulerian pentacyclic blocks”, Proc. Intern. Conf. “Problemy Teoreticheskoj Kibernetiki” (Kazan', 2020), 2020, 41–44 (in Russian)

[10] V. A. Voblyi, “Enumeration of labeled connected graphs with given order and size”, J. Appl. Ind. Math., 10:2 (2016), 302–310

[11] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Dover Publ., 2004

[12] J. Riordan, Combinatorial Identities, Wiley, New York, 1968

[13] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174

[14] C. Mc Diarmid, A. Scott, “A random graphs from a block stable class. II”, Europ. J. Combin., 58 (2016), 96–106

[15] V. A. Voblyi, A. K. Meleshko, “The number of labeled block-cactus graphs”, J. Appl. Industr. Math., 8:3 (2014), 422–427