Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_4_a5, author = {V. A. Voblyi}, title = {Enumeration of labeled {Eulerian} pentacyclic graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {87--92}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/} }
V. A. Voblyi. Enumeration of labeled Eulerian pentacyclic graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 87-92. http://geodesic.mathdoc.fr/item/PDM_2020_4_a5/
[1] F. Harary, E. M. Palmer, Graphical Enumeration, Academic Press, N.Y.–London, 1973
[2] A. Kumar, “A study on Euler graph and it's applications”, Int. J. Math. Trends Technol., 43:1 (2017), 9–14
[3] P. Pancoska, Z. Moravek, U. M. Moll, “Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs”, Nucleic Acids Res., 32:15 (2004), 4630–4645
[4] P. Amudha, A. C. C. Sagayaraj, A. C. S. Sheela, “An application of graph theory in cryptography”, Int. J. Pure Appl. Math., 119:13 (2018), 375–383
[5] R. C. Read, “Euler graphs on labelled nodes”, Canad. J. Math., 14 (1962), 482–486
[6] S. Tazawa, “Enumeration of labelled 2-connected Euler graphs”, J. Combinat. Inform. System Sci., 23:1–4 (1998), 407–414
[7] V. A. Voblyi, “Enumeration of labeled connected bicyclic and tricyclic Eulerian graphs”, Matematicheskie Zametki, 92:5 (2012), 678–683 (in Russian)
[8] V. A. Voblyi, A. K. Meleshko, “Enumeration of labeled Eulerian tetracyclic graphs”, Diskretn. Anal. Issled. Oper., 21:5 (2014), 17–22 (in Russian)
[9] V. A. Voblyi, “On the number of labeled Eulerian pentacyclic blocks”, Proc. Intern. Conf. “Problemy Teoreticheskoj Kibernetiki” (Kazan', 2020), 2020, 41–44 (in Russian)
[10] V. A. Voblyi, “Enumeration of labeled connected graphs with given order and size”, J. Appl. Ind. Math., 10:2 (2016), 302–310
[11] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Dover Publ., 2004
[12] J. Riordan, Combinatorial Identities, Wiley, New York, 1968
[13] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174
[14] C. Mc Diarmid, A. Scott, “A random graphs from a block stable class. II”, Europ. J. Combin., 58 (2016), 96–106
[15] V. A. Voblyi, A. K. Meleshko, “The number of labeled block-cactus graphs”, J. Appl. Industr. Math., 8:3 (2014), 422–427