Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_4_a4, author = {V. M. Deundyak and Yu. V. Kosolapov}, title = {On some properties of the {Schur~---} {Hadamard} product for linear codes and their applications}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {72--86}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_4_a4/} }
TY - JOUR AU - V. M. Deundyak AU - Yu. V. Kosolapov TI - On some properties of the Schur~--- Hadamard product for linear codes and their applications JO - Prikladnaâ diskretnaâ matematika PY - 2020 SP - 72 EP - 86 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2020_4_a4/ LA - ru ID - PDM_2020_4_a4 ER -
V. M. Deundyak; Yu. V. Kosolapov. On some properties of the Schur~--- Hadamard product for linear codes and their applications. Prikladnaâ diskretnaâ matematika, no. 4 (2020), pp. 72-86. http://geodesic.mathdoc.fr/item/PDM_2020_4_a4/
[1] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44
[2] N. Sendrier, J. P. Tillich, “Code-Based Cryptography: New Security Solutions against a Quantum Adversary”, ERCIM News, ERCIM, 2016
[3] G. Alagic, J. Alperin-Sheriff, D. Apon et al, Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process, US Department of Commerce, NIST, 2019
[4] C. Wieschebrink, “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, LNCS, 6061, 2010, 61–72
[5] M. A. Borodin, I. V. Chizhov, “Effective attack on the McEliece cryptosystem based on Reed Muller codes”, Discrete Math. Appl., 24:5 (2014), 273–280
[6] V. M. Deundyak, Yu. V. Kosolapov, “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Intern. Symp. Prob. of Redundancy in Information and Control Systems (Russia, 2019), 143–148
[7] M. A. Borodin, I. V. Chizhov, “Classification of Hadamard products of codimension 1 subcodes of Reed–Muller codes”, Diskret. Matem., 32:1 (2020), 115–134 (in Russian)
[8] V. Vysotskaya, “The Reed–Muller code square and equivalence classes of McEliece–Sidelnikov cryptosystem private keys”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2017, no. 10, 66–68 (in Russian)
[9] V. Vysotskaya, I. Chizhov, “Equivalence classes of McEliece–Sidelnikov-type cryptosystems”, Sixteenth Intern. Workshop Algebraic Combinat. Coding Theory (Svetlogorsk (Kaliningrad region), Russia, 2018), 121–124
[10] A. M. Davletshina, “Search for equivalent keys of the McEliece - Sidelnikov cryptosystem built on the Reed–Muller binary codes”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2019, no. 12, 98–100 (in Russian)
[11] V. M. Deundyak, Yu. V. Kosolapov, I. A. Maystrenko, “On the decipherment of Sidel'nikov-type cryptosystems”, LNCS, 12087, 2020, 20–40
[12] V. M. Deundyak, Y. V. Kosolapov, E. A. Lelyuk, “Decoding the tensor product of MLD codes and applications for code cryptosystems”, Aut. Control Comp. Sci., 52:7 (2019), 647–657
[13] H. Randriambololona, On Products and Powers of Linear Codes under Componentwise Multiplication, 2014, arXiv: 1312.0022
[14] V. M. Deundyak, Yu. V. Kosolapov, “The use of the direct sum decomposition algorithm for analyzing the strength of some McEliece type cryptosystems”, Vestn. JuUrGU. Ser. Matem. Modelirovanie i Programmirovanie, 12:3 (2019), 89–101 (in Russian)
[15] I. Cascudo, R. Cramer, D. Mirandola, G. Zemor, “Squares of random linear codes”, IEEE Trans. Inform. Theory, 61:3 (2015), 1159–1173
[16] H. V. Henderson, S. R. Searle, “The vec-permutation matrix, the vec operator and Kronecker products: A review”, Linear and Multilinear Algebra, 9 (1981), 271–288
[17] V. M. Sidel'nikov, Coding Theory, Fizmatlit Publ, M., 2008, 324 pp. (in Russian)
[18] D. Slepian, “Some further theory of group codes”, Bell Syst. Tech. J., 39:5 (1960), 1219–1252
[19] E. F. Assmus, “The category of linear codes”, IEEE Trans. Inform. Theory, 44:2 (1998), 612–629
[20] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Pub. Co., Amsterdam–New York, 1977, 762 pp.