Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_3_a8, author = {A. N. Rybalov}, title = {On generic complexity of the existential theories}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {120--126}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_3_a8/} }
A. N. Rybalov. On generic complexity of the existential theories. Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 120-126. http://geodesic.mathdoc.fr/item/PDM_2020_3_a8/
[1] Daniyarova E. Y., Myasnikov A. G., Remeslennikov V. N., Algebraic Geometry over Algebraic Structures, SB RAS Publ., Novosibirsk, 2016, 288 pp. (in Russian)
[2] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[3] Garey M., Johnson D., Computers and Intractability, Freeman Co, N. Y., 1979, 340 pp. | MR | Zbl
[4] Impagliazzo R., Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[5] Knuth D. E., The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts, 1997 | MR
[6] Rybalov A., “On generic complexity of the validity problem for Boolean formulas”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 119–126 (in Russian)