A set of families of analytically described triple loop networks defined by a parameter
Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 108-119

Voir la notice de l'article provenant de la source Math-Net.Ru

A set of families of undirected triple loop networks of the form $C(N(d,p); 1, s_2(d,p),$ $ s_3(d,p))$ with the given diameter $d>1$ and a parameter $p=1, 2, \ldots, d-1$ is obtained. For each such family, the order $N$ of every graph in the family and its generators $s_2$ and $s_3$ are defined by a cubical polynomial function of the diameter. The found set includes circulant graphs of degree 6 with the largest known orders for any diameters $d\equiv 0 \pmod 3$ and $d\equiv 2 \pmod 3$. Examples of constructing new families of triple loop networks based on the definition of functions $p=p(d)$ are presented.
Keywords: undirected triple loop networks, circulant graphs of degree $6$ with given diameter, families of circulant graphs.
@article{PDM_2020_3_a7,
     author = {E. A. Monakhova},
     title = {A set of families of analytically described triple loop networks defined by a parameter},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {108--119},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/}
}
TY  - JOUR
AU  - E. A. Monakhova
TI  - A set of families of analytically described triple loop networks defined by a parameter
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 108
EP  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/
LA  - ru
ID  - PDM_2020_3_a7
ER  - 
%0 Journal Article
%A E. A. Monakhova
%T A set of families of analytically described triple loop networks defined by a parameter
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 108-119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/
%G ru
%F PDM_2020_3_a7
E. A. Monakhova. A set of families of analytically described triple loop networks defined by a parameter. Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 108-119. http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/