Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_3_a7, author = {E. A. Monakhova}, title = {A set of families of analytically described triple loop networks defined by a parameter}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {108--119}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/} }
E. A. Monakhova. A set of families of analytically described triple loop networks defined by a parameter. Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 108-119. http://geodesic.mathdoc.fr/item/PDM_2020_3_a7/
[1] Monakhova E. A., “Structural and communicative properties of circulant networks”, Prikladnaya Diskretnaya Matematika, 2011, no. 3, 92–115 (in Russian)
[2] Monakhova E. A., “A survey on undirected circulant graphs”, Discrete Math. Algorithms Appl., 2012, no. 4 https://www.researchgate.net/publication/267143246_A_survey_on_undirected_circulant_graphs | MR | Zbl
[3] Perez-Roses H., “Algebraic and computer-based methods in the undirected degree/diameter problem — A brief survey”, Electr. J. Graph Theory Appl., 2:2 (2014), 166–190 | DOI | MR | Zbl
[4] Bermond J.-C., Comellas F., Hsu D. F., “Distributed loop computer networks: a survey”, J. Parallel Distributed Comput., 24 (1995), 2–10 | DOI
[5] Hwang F. K., “A survey on multi-loop networks”, Theor. Comput. Sci., 299 (2003), 107–121 | DOI | MR | Zbl
[6] Romanov A., Amerikanov A., Lezhnev E., “Analysis of approaches for synthesis of networks-on-chip by using circulant topologies”, J. Physics: Conf. Ser., 1050 (2018), 1–12 | DOI
[7] Romanov A. Yu., “Development of routing algorithms in networks-on-chip based on ring circulant topologies”, Heliyon, 5:4 (2019), 1–23 | DOI
[8] Romanov A. Yu., Vedmid E. A., Monakhova E. A., “Designing networks-on-chip based on triple loop (circulant) networks: routing algorithm development”, Informacionnye Tekhnologii, 25:9 (2019), 522–530 (in Russian) | MR
[9] Yebra J. L. A., Fiol M. A., Morillo P., Alegre I., “The diameter of undirected graphs associated to plane tessellations”, Ars Combinatoria, 20B (1985), 159–172 | MR
[10] Wong C. K., Coppersmith D., “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21 (1974), 392–402 | DOI | MR | Zbl
[11] Chen S., Jia X.-D., “Undirected loop networks”, Networks, 23 (1993), 257–260 | DOI | MR | Zbl
[12] Barriere L., Fabrega J., Simo E., Zaragoza M., “Fault-tolerant routings in chordal ring networks”, Networks, 36:3 (2000), 180–190 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] Thomson A., Zhou S., “Gossiping and routing in undirected triple-loop networks”, Networks, 55:4 (2010), 341–349 | DOI | MR | Zbl
[14] Liestman A. L., Opatrny J., Zaragoza M., “Network properties of double and triple fixed-step graphs”, Int. J. Found. Comp. Sci., 9 (1998), 57–76 | DOI | Zbl
[15] Jha P. K., “A family of efficient six-regular circulants representable as a Kronecker product”, Discr. Appl. Math., 203 (2016), 72–84 | DOI | MR | Zbl
[16] Monakhova E., “Optimal triple loop networks with given transmission delay: Topological design and routing”, Intern. Network Optimization Conf., INOC'2003 (Evry/Paris, France, 2003), 410–415
[17] Monakhova E. A., Monakhov O. G., “A dynamic algorithm of two-terminal routing for analytically described families of degree six circulant networks”, Proc. XIX Intern. Conf. “Problemy Informatiki v Obrazovanii, Upravlenii, Ekonomike i Tekhnike”, PDZ Publ., Penza, 2019, 30–37 (in Russian)