Mots-clés : Diophantine equations.
@article{PDM_2020_2_a7,
author = {A. N. Rybalov},
title = {On generic complexity of the problem of~representation of natural numbers by~sum~of~two~squares},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {93--99},
year = {2020},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2020_2_a7/}
}
A. N. Rybalov. On generic complexity of the problem of representation of natural numbers by sum of two squares. Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 93-99. http://geodesic.mathdoc.fr/item/PDM_2020_2_a7/
[1] Dickson L. E., History of the Theory of Numbers, v. II, Dover Publications, N.Y., 2005, 803 pp. | MR
[2] Senderov V., Spivak A., “Sums of squares and gaussian integers”, Quant, 1999, no. 3, 14–22 (in Russian)
[3] Adleman L. M., McCurley K. S., “Open problems in number theoretic complexity, II”, Proc. First Intern. Symp. Algorithmic Number Theory (N.Y., USA, May 6–9, 1994), 291–322 | MR | Zbl
[4] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[5] Impagliazzo R., Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[6] Hardy G. H., Ramanujan S., Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea, N.Y., 1999, 67 pp. | MR