On the distribution of orders of Frobenius action on $\ell$-torsion of abelian surfaces
Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 22-33
Voir la notice de l'article provenant de la source Math-Net.Ru
The computation of the order of Frobenius action on the $\ell$-torsion is a part of Schoof — Elkies — Atkin algorithm for point counting on an elliptic curve $E$ over a finite field $\mathbb{F}_q$. The idea of Schoof's algorithm is to compute the trace of Frobenius $t$ modulo primes $\ell$ and restore it by the Chinese remainder theorem. Atkin's improvement consists of computing the order $r$ of the Frobenius action on $E[\ell]$ and of restricting the number $t \pmod{\ell}$ to enumerate by using the formula $t^2 \equiv q (\zeta + \zeta^{-1})^2 \pmod{\ell}$. Here $\zeta$ is a primitive $r$-th root of unity. In this paper, we generalize Atkin's formula to the general case of abelian variety of dimension $g$. Classically, finding of the order $r$ involves expensive computation of modular polynomials. We study the distribution of the Frobenius orders in case of abelian surfaces and $q \equiv 1 \pmod{\ell}$ in order to replace these expensive computations by probabilistic algorithms.
Keywords:
abelian varieties, finite fields
Mots-clés : Frobenius action, $\ell$-torsion.
Mots-clés : Frobenius action, $\ell$-torsion.
@article{PDM_2020_2_a2,
author = {N. S. Kolesnikov and S. A. Novoselov},
title = {On the distribution of orders of {Frobenius} action on $\ell$-torsion of abelian surfaces},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {22--33},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDM_2020_2_a2/}
}
TY - JOUR AU - N. S. Kolesnikov AU - S. A. Novoselov TI - On the distribution of orders of Frobenius action on $\ell$-torsion of abelian surfaces JO - Prikladnaâ diskretnaâ matematika PY - 2020 SP - 22 EP - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2020_2_a2/ LA - en ID - PDM_2020_2_a2 ER -
N. S. Kolesnikov; S. A. Novoselov. On the distribution of orders of Frobenius action on $\ell$-torsion of abelian surfaces. Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 22-33. http://geodesic.mathdoc.fr/item/PDM_2020_2_a2/