Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_2_a1, author = {K. D. Tsaregorodtsev}, title = {One-to-one correspondense between proper families {of~Boolean} functions and unique sink orientations of~cubes}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {16--21}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_2_a1/} }
TY - JOUR AU - K. D. Tsaregorodtsev TI - One-to-one correspondense between proper families of~Boolean functions and unique sink orientations of~cubes JO - Prikladnaâ diskretnaâ matematika PY - 2020 SP - 16 EP - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2020_2_a1/ LA - ru ID - PDM_2020_2_a1 ER -
K. D. Tsaregorodtsev. One-to-one correspondense between proper families of~Boolean functions and unique sink orientations of~cubes. Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 16-21. http://geodesic.mathdoc.fr/item/PDM_2020_2_a1/
[1] Keedwell A., Denes J., Latin Squares and their Applications, 2nd Ed., North Holland, 2015, 438 pp. | MR
[2] Glukhov M. M., “Some applications of quasigroups in cryptography”, Prikladnaya Diskretnaya Matematika, 2008, no. 2(2), 28–32 (in Russian)
[3] Nosov V. A., “Constructing classes of Latin squares in the Boolean database”, Intelligent Systems, 4:3–4 (1999), 307–320 (in Russian)
[4] Nosov V. A., “Constructing a parametrical families of Latin squares in a vector database”, Intelligent Systems, 8:1–4 (2006), 517–529 (in Russian)
[5] Szabo T., Welzl E., “Unique sink orientations of cubes”, Proc. 42nd IEEE Symp. FOCS (Newport Beach, CA, USA, 2001), 547–555 | MR
[6] Schurr I., Unique Sink Orientations of Cubes, Doctoral Thesis, ETH Zurich, 2004 | MR
[7] Nosov V. A., Pankratyev A. E., “On functional representation of Latin squares”, Intelligent Systems, 12:1–4 (2008), 317–332 (in Russian) | MR
[8] Gärtner B., Thomas A., “The complexity of recognizing unique sink orientations”, Leibniz Intern. Proc. Informatics (LIPIcs), 30, 2015, 341–353 | MR
[9] Matousek J., “The number of unique-sink orientations of the hypercube”, Combinatorica, 26 (2006), 91–99 | DOI | MR | Zbl