On the asymptotic normality of the frequencies of~letters in a multicyclic sequence
Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 5-15
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a multidimensional central limit theorem for frequencies $\xi_{y,T}$ of letters $y$, $y \in \{0,1,\ldots,N-1\}$, $N\ge 2$, in a multicyclic sequence of length $T$ formed by addition letters from $r$, $r \ge 2 $, independent vectors of coprime lengths $n_1,\ldots, n_r$ consisted of independent random variables distributed uniformly on the set $\{0,1,\ldots,N-1\}$: if the lengths of the registers $n_1,\ldots,n_r \to \infty$, the size of the alphabet $N$ is fixed, and $T\left(\textstyle\sum\limits_{k=1}^r n_k^{-1}\right)^{2(1-1/m)} \to 0$ for some natural number $ m \ge 3$, then the random vector $(T/N)^{-1/2}(\xi_{0,T}-T/N,\ldots,\xi_{N-2,T}-T/N)$ converge in distribution to the $(N-1)$-dimensional normal law with zero mean and non-degenerate covariance matrix. We also obtain an estimate for the rate of convergence in the uniform metric of the one-dimensional distribution function of any of the frequencies $\xi_{y,T}$ to the distribution function of the standard normal law $\Phi$ of the form
$$
\left|\mathsf{P}\left\{\xi_{y,T}\frac{T}{N}+\frac{x}{N}\sqrt{T(N-1)}\right\}- \Phi(x)\right|\le C T^{3/4}\left(\textstyle\sum\limits_{k=1}^r {n_k^{-1}}\right)
$$
for any $y\in\mathcal{A}_N, x \in \mathbb{R},$ where $C>0$ is known constant.
Keywords:
multicyclic sequence, central limit theorem, frequencies of letters, Janson's method.
@article{PDM_2020_2_a0,
author = {N. M. Mezhennaya and V. G. Mikhailov},
title = {On the asymptotic normality of the frequencies of~letters in a multicyclic sequence},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--15},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2020_2_a0/}
}
TY - JOUR AU - N. M. Mezhennaya AU - V. G. Mikhailov TI - On the asymptotic normality of the frequencies of~letters in a multicyclic sequence JO - Prikladnaâ diskretnaâ matematika PY - 2020 SP - 5 EP - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2020_2_a0/ LA - ru ID - PDM_2020_2_a0 ER -
N. M. Mezhennaya; V. G. Mikhailov. On the asymptotic normality of the frequencies of~letters in a multicyclic sequence. Prikladnaâ diskretnaâ matematika, no. 2 (2020), pp. 5-15. http://geodesic.mathdoc.fr/item/PDM_2020_2_a0/