on a $100 \times 100 \times 100$ lattice and analyzed by using the functions of distribution of number and mass of clusters of the accompanying structure by size. As a result of the computational experiment, there were obtained dependencies on the probability of perimeter germination for such basic characteristics of the cluster structure as the mass of the main cluster; the mass of the maximum cluster of concomitant structure; the total mass of the concomitant structure; mean-square radii of the main cluster and the maximum cluster of the concomitant structure; the number of clusters of concomitant structure; mass ratio of the maximum cluster of the concomitant structure to the mass of the main cluster. It has been established that in the interval of germination probability $0{,}3117 in the concomitant structure, the dominant cluster is formed with the mean-square radius close to the mean-square radius of the main cluster. With a further increase in probability of germination, the size of the dominant cluster decreases sharply, and at $P\leq 0{,}67$ its decay is observed.
@article{PDM_2020_1_a9,
author = {D. V. Alekseev and G. A. Kazunina},
title = {Concomitant clusters structure creating by {Hammersley{\textendash}Leath{\textendash}Alexandrowichz} algorithm for~percolation cluster generating},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {117--127},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2020_1_a9/}
}
TY - JOUR AU - D. V. Alekseev AU - G. A. Kazunina TI - Concomitant clusters structure creating by Hammersley–Leath–Alexandrowichz algorithm for percolation cluster generating JO - Prikladnaâ diskretnaâ matematika PY - 2020 SP - 117 EP - 127 IS - 1 UR - http://geodesic.mathdoc.fr/item/PDM_2020_1_a9/ LA - ru ID - PDM_2020_1_a9 ER -
%0 Journal Article %A D. V. Alekseev %A G. A. Kazunina %T Concomitant clusters structure creating by Hammersley–Leath–Alexandrowichz algorithm for percolation cluster generating %J Prikladnaâ diskretnaâ matematika %D 2020 %P 117-127 %N 1 %U http://geodesic.mathdoc.fr/item/PDM_2020_1_a9/ %G ru %F PDM_2020_1_a9
D. V. Alekseev; G. A. Kazunina. Concomitant clusters structure creating by Hammersley–Leath–Alexandrowichz algorithm for percolation cluster generating. Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 117-127. http://geodesic.mathdoc.fr/item/PDM_2020_1_a9/
[1] Feder J., Fractals, Springer, N.Y., 1988, 258 pp. | MR
[2] Guld Kh., Tobochnik Ya., Computer Modeling in Physics, v. 2, Mir Publ., M., 1990, 390 pp. (in Russian)
[3] Bandman O. L., “Discrete models of physical-chemical processes”, Prikladnaya Diskretnaya Matematika, 2009, no. 3(5), 33–49 (in Russian)
[4] Bandman O. L., “A discrete stochastic model of water permeation through a porous substance: parallel implementation peculiarities”, Numer. Analys. Appl., 11:1, 4–15 | DOI | MR
[5] Alekseev D. V., Kazunina G. A., “Modeling the of damage accumulation of probabilistic cellular automata”, Fizika Tverdogo Tela, 48:2 (2006), 255–261 (in Russian)
[6] Alekseev D. V., Kazunina G. A., Cherednichenko A. V., “Cellular automaton simulation of the fracture process for brittle materials”, Prikladnaya Diskretnaya Matematika, 2015, no. 2(28), 103–118 (in Russian)
[7] Lobanov A. I., “Model of cellular automata”, Computer Research and Modeling, 2:3 (2010), 273–293 (in Russian) | MR
[8] Matyushkin I. V., Zapletina M. A., “Review on the subject of cellular automata on the basis of modern Russian publications”, Computer Research and Modeling, 11:1 (2019), 9–57 (in Russian) | MR
[9] Tarasevich Yu. Yu., Percolation: theory, applications, algorithms, Librokom Publ., M., 2018, 112 pp. (in Russian)
[10] Moskalev P. V., “Analysis of the percolation cluster structure”, J. Tehnicheskoi Fiziki, 79:6 (2009), 2–7 (in Russian)
[11] Moskalev P. V., “The structure of site percolation models on three-dimensional square lattices”, Computer Research and Modeling, 5:4 (2013), 607–622 (in Russian) | MR
[12] Alexandrowicz Z., “Critically branched chains and percolation clusters”, Phys. Lett. A, 80:4 (1980), 284–286 | DOI | MR
[13] Leath P., “Cluster size and boundary distribution near percolation threshold”, Phys. Rev. B, 14:11 (1976), 5046–5055 | DOI
[14] Alekseev D. V., Kazunina G. A., “Concomitant clusters structure creating by percolation cluster generating Hammersley–Leath–Alexandrowichz algorithm”, Aktualnie Napravleniya Nauchnih Issledovanii XXI Veka: Teorya i Praktika, 2018, no. 6(42), 18–20 (in Russian)
[15] Alekseev D. V., An Introduction to Computer Simulation Physical Systems: Using Microsoft Visual Basic, LENAND Publ., M., 2019, 272 pp. (in Russian)