A computation of the shortest paths in optimal two-dimensional circulant networks
Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 87-100

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of tight optimal two-dimensional circulant networks designed by analytical formulas has a description of the form $C(N;d,d+1)$, where $N$ is the order of a graph and the generator $d$ is the nearest integer to $(\sqrt {2N-1}-1)/2$. For this family, two new improved versions of a shortest-path routing algorithm with a complexity $O(1)$ are presented. Simple proofs for formulas used for routing algorithms based on the plane tessellation are received. In the routing algorithm, for a graph $C(N;d,d+1)$ the following formulas for the computing shortest routing vector $(x,y)$ from 0 to a node $k\le \lfloor N/2 \rfloor$ are used: if $k\bmod(d+1)=0$ or $\lfloor k/(d+1)\rfloor$, then $x=-k\bmod(d+1)$, $y=\lfloor k/(d+1)\rfloor -x$, else $x=-k\bmod(d+1)+d+1$, $y= =\lfloor k/(d+1)\rfloor-x+1$. The routing algorithms and their estimates are considered for using in topologies of networks-on-chip. For implementation in networks-on-chip the proposed routing algorithm requires $ \lceil \log_{2}N \rceil+ \lceil \log_{2}\lceil \sqrt{N/2} \rceil \rceil$ bits. New versions of the routing algorithm improve also the routing algorithm proposed early by the author for optimal generalized Petersen graphs with an analytical description of the form $P(N,a,a+1)$, where $2N$ is the order of a graph and $a = \lceil \sqrt{(N-1)/2} \rceil-1$.
Keywords: two-dimensional circulant networks, diameter, shortest paths, optimal generalized Petersen graphs, networks-on-chip.
@article{PDM_2020_1_a6,
     author = {E. A. Monakhova},
     title = {A computation of the shortest paths in optimal two-dimensional circulant networks},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {87--100},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_1_a6/}
}
TY  - JOUR
AU  - E. A. Monakhova
TI  - A computation of the shortest paths in optimal two-dimensional circulant networks
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 87
EP  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_1_a6/
LA  - ru
ID  - PDM_2020_1_a6
ER  - 
%0 Journal Article
%A E. A. Monakhova
%T A computation of the shortest paths in optimal two-dimensional circulant networks
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 87-100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_1_a6/
%G ru
%F PDM_2020_1_a6
E. A. Monakhova. A computation of the shortest paths in optimal two-dimensional circulant networks. Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 87-100. http://geodesic.mathdoc.fr/item/PDM_2020_1_a6/