The number of labeled tetracyclic series-parallel~blocks
Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 57-61
Voir la notice de l'article provenant de la source Math-Net.Ru
A series-parallel graph is a graph that does not contain a complete graph with four vertices as a minor. Such graphs are used in the construction of reliable communication networks. Let $TB(n)$ be the number of labeled series-parallel tetracyclic blocks with $n$ vertices. The formula $TB(n)=\dfrac{n!}{80640}(n^5+30n^4+257n^3+768n^2+960n+504)\dbinom{n-3}{3}$ is obtained. It is proved that with a uniform probability distribution, the probability that the labeled tetracyclic block is a series-parallel graph is asymptotically $3/11$.
Keywords:
labeled graph, tetracyclic graph, series-parallel graph, block, enumeration, asymptotics.
@article{PDM_2020_1_a4,
author = {V. A. Voblyi},
title = {The number of labeled tetracyclic series-parallel~blocks},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {57--61},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/}
}
V. A. Voblyi. The number of labeled tetracyclic series-parallel~blocks. Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/