The number of labeled tetracyclic series-parallel~blocks
Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 57-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A series-parallel graph is a graph that does not contain a complete graph with four vertices as a minor. Such graphs are used in the construction of reliable communication networks. Let $TB(n)$ be the number of labeled series-parallel tetracyclic blocks with $n$ vertices. The formula $TB(n)=\dfrac{n!}{80640}(n^5+30n^4+257n^3+768n^2+960n+504)\dbinom{n-3}{3}$ is obtained. It is proved that with a uniform probability distribution, the probability that the labeled tetracyclic block is a series-parallel graph is asymptotically $3/11$.
Keywords: labeled graph, tetracyclic graph, series-parallel graph, block, enumeration, asymptotics.
@article{PDM_2020_1_a4,
     author = {V. A. Voblyi},
     title = {The number of labeled tetracyclic series-parallel~blocks},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - The number of labeled tetracyclic series-parallel~blocks
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 57
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/
LA  - ru
ID  - PDM_2020_1_a4
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T The number of labeled tetracyclic series-parallel~blocks
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 57-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/
%G ru
%F PDM_2020_1_a4
V. A. Voblyi. The number of labeled tetracyclic series-parallel~blocks. Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/

[1] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, European J. Combinatorics, 28 (2007), 2091–2105 | DOI | MR | Zbl

[2] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI | MR

[3] Takamizawa K., Nishezeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallel graphs”, J. ACM, 29:3 (1982), 623–641 | DOI | MR | Zbl

[4] Voblyy V. A., “The second Riddell relation and its consequences”, Diskretn. analiz i issled. oper., 26:1 (2019), 20–32 (in Russian) | Zbl

[5] Voblyy V. A., Meleshko K. A., “On the number of labeled series-parallel tricyclic blocks”, Proc. Intern. Conf. “Algebra, Teoriya Chisel i Diskretnaya Geometriya. Sovremennyye Problemy i Prilozheniya”, TPSU Publ., Tula, 2018, 168–170 (in Russian)

[6] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. IV”, Proc. Nat. Acad. Sci. USA, 43 (1957), 163–167 | DOI | MR

[7] Stepanov V. E., “On some features of the structure of a random graph near a critical point”, Teoriya Veroyatn. Primen., 32:4 (1987), 633–657 (in Russian) | MR

[8] Heap B. R., “Enumeration homeomorphically irreducible star graphs”, J. Math. Phys., 7:7 (1966), 1582–1587 | DOI | MR | Zbl

[9] Prudnikov A. P. et al., Integrals and Series, v. 1, Nauka Publ., M., 1981, 800 pp. (in Russian) | MR

[10] Wright E. M., “The number of connected sparsely edges graphs. II”, J. Graph Theory, 2 (1978), 299–305 | DOI | MR | Zbl