Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2020_1_a4, author = {V. A. Voblyi}, title = {The number of labeled tetracyclic series-parallel~blocks}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {57--61}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/} }
V. A. Voblyi. The number of labeled tetracyclic series-parallel~blocks. Prikladnaâ diskretnaâ matematika, no. 1 (2020), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2020_1_a4/
[1] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, European J. Combinatorics, 28 (2007), 2091–2105 | DOI | MR | Zbl
[2] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI | MR
[3] Takamizawa K., Nishezeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallel graphs”, J. ACM, 29:3 (1982), 623–641 | DOI | MR | Zbl
[4] Voblyy V. A., “The second Riddell relation and its consequences”, Diskretn. analiz i issled. oper., 26:1 (2019), 20–32 (in Russian) | Zbl
[5] Voblyy V. A., Meleshko K. A., “On the number of labeled series-parallel tricyclic blocks”, Proc. Intern. Conf. “Algebra, Teoriya Chisel i Diskretnaya Geometriya. Sovremennyye Problemy i Prilozheniya”, TPSU Publ., Tula, 2018, 168–170 (in Russian)
[6] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. IV”, Proc. Nat. Acad. Sci. USA, 43 (1957), 163–167 | DOI | MR
[7] Stepanov V. E., “On some features of the structure of a random graph near a critical point”, Teoriya Veroyatn. Primen., 32:4 (1987), 633–657 (in Russian) | MR
[8] Heap B. R., “Enumeration homeomorphically irreducible star graphs”, J. Math. Phys., 7:7 (1966), 1582–1587 | DOI | MR | Zbl
[9] Prudnikov A. P. et al., Integrals and Series, v. 1, Nauka Publ., M., 1981, 800 pp. (in Russian) | MR
[10] Wright E. M., “The number of connected sparsely edges graphs. II”, J. Graph Theory, 2 (1978), 299–305 | DOI | MR | Zbl