Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_4_a8, author = {A. M. Magomedov and T. A. Magomedov and S. A. Lawrencenko}, title = {Mutually-recursive formulas for enumerating partitions of the rectangle}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {108--121}, publisher = {mathdoc}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_4_a8/} }
TY - JOUR AU - A. M. Magomedov AU - T. A. Magomedov AU - S. A. Lawrencenko TI - Mutually-recursive formulas for enumerating partitions of the rectangle JO - Prikladnaâ diskretnaâ matematika PY - 2019 SP - 108 EP - 121 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2019_4_a8/ LA - ru ID - PDM_2019_4_a8 ER -
A. M. Magomedov; T. A. Magomedov; S. A. Lawrencenko. Mutually-recursive formulas for enumerating partitions of the rectangle. Prikladnaâ diskretnaâ matematika, no. 4 (2019), pp. 108-121. http://geodesic.mathdoc.fr/item/PDM_2019_4_a8/
[1] Stanley R. P., Enumerative Combinatorics, v. 2, Cambridge University Press, Cambridge, 1999, 228 pp. | MR
[2] Montroll E. W., “Lattice statistics”, Applied Combinatorial Mathematics, ed. E. F. Beckenbach, John Wiley and Sons, N.Y., 1964, 96–143 | MR
[3] Karavaev A. M., Perepechko S. N., “The problem of dimers on a cylinder: recurrence relations and generating functions”, Matematicheskoe Modelirovanie, 26:11 (2014), 18–22 (in Russian) | MR | Zbl
[4] Kateleyn P. W., “The statistic of dimers on a lattice I: The number of dimer arrangements on quadratic lattice”, Physica, 27 (1961), 1209–1225 | DOI | MR
[5] Temperley H. N. V., Fisher M. E., “Dimer problem in statistical mechanics — an exact result”, Phil. Mag., 6 (1961), 1061–1063 | DOI | MR | Zbl
[6] Matoušek J., Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra, Amer. Math. Soc., 2010, 182 pp. | MR | Zbl
[7] Klarner D., Pollack J., “Domino tilings of rectangles with fixed width”, Discr. Math., 32 (1980), 45–52 | DOI | MR | Zbl
[8] Read R. C., “A note on tiling rectangles with dominoes”, Fib. Q, 18:1 (1980), 24–27 | MR | Zbl
[9] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics, Addison-Wesley, Massachusetts, 1994, 657 pp. | MR | Zbl
[10] Graham R., Knut D., Patashnik O., Concrete Mathematics, Mir Publ., M., 1998, 703 pp. (in Russian) | MR
[11] Olympiads in Informatics, 1994
[12] Kirjuhin V. M., “[VI all-Russian Olympiad in Informatics”, Informatika i Obrazovanie, 1994, no. 3, 47–50 (in Russian)
[13] Volchenkov S. G., “Task «Tiling»”, Informatika i Obrazovanie, 1994, no. 3, 52–54 (in Russian)
[14] Magomedov A. M., Magomedov T. A., “Computer construction of recurrence formulas for partitions of the rectangle”, Proc. X Belarusian Math. Conf., November 3–7, 2008, v. 4, Institut of Mathematics NAS of Belarus, Minsk, 2008, 44 (in Russian)
[15] Albahari J., Albahari B., C# 5.0 in a Nutshell. The Definitive Reference, 5th ed., O'Reilly Media, 2012, 1064 pp.
[16] Swamy M. N., Thulasiraman K., Graphs, Networks and Algorithms, Wiley-Interscience, N.Y., 1981, 590 pp. | MR | Zbl
[17] Магомедов А. М., “Chain structures in scheduling tasks”, Prikladnaja Diskretnaja Matematika, 2016, no. 3(33), 67–77 (in Russian)
[18] Garey M. R., Jonson D. S., Computers and Intractability, Freeman and Company, San Francisco, 1979, 347 pp. | MR | Zbl
[19] Lawler E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, N.Y., 1976, 384 pp. | MR | Zbl
[20] Emelichev V. A., Mel'nikov O. I., Sarvanov V. I., Tyshkevich R. I., Lectures on Graph Theory, Librokom Publ., M., 2009, 392 pp. (in Russian) | MR