Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_4_a7, author = {V. S. Kozhevnikov and I. V. Matyushkin}, title = {Computation of a determinant and a matrix product in~cellular automata}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {88--107}, publisher = {mathdoc}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_4_a7/} }
V. S. Kozhevnikov; I. V. Matyushkin. Computation of a determinant and a matrix product in~cellular automata. Prikladnaâ diskretnaâ matematika, no. 4 (2019), pp. 88-107. http://geodesic.mathdoc.fr/item/PDM_2019_4_a7/
[1] Legendi T. et al., “Megacell machine”, Parallel Computing, 8:1–3 (1988), 195–199 | DOI | MR | Zbl
[2] Kramer P. P. G., van Leeuwen J., “Systolic computation and VLSI”, Foundations of Computer Science IV, v. 1, eds. J. W. de Bakker, J. van Leeuven, Amsterdam, 1983, 75–103 | MR | Zbl
[3] Matushkin I. V., Zapletina M. A., “Data reflection and transposition in the matrix of a cellular automata computator”, Proc. Universities. Electronics, 24:1 (2019), 51–63 (in Russian)
[4] Matushkin I. V., Zhemerikin A. V., Zapletina M. A., “Cellular Automata Algorithms for String Sorting and Integer Multiplication by Atrubin's Scheme”, Proc. Universities. Electronics, 21:6 (2016), 557–565 (in Russian)
[5] Matyushkin I. V., Kozhevnikov V. S., “Cellular automata algorithms for matrix permutations”, Proc. MIPT, 11:1 (2019), 39–52 (in Russian) | MR
[6] Gergel V. P., Theory and Practice of Parallel Computing, Internet-Universitet Informatsionnykh Tekhnologiy; BINOM Publ., M., 2007, 423 pp. (in Russian)
[7] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Basics of the Theory of Homogeneous Structures, Nauka Publ., M., 1990, 296 pp. (in Russian) | MR
[8] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13:4 (1969), 354–356 | DOI | MR | Zbl
[9] Cohn H., Kleinberg R., Szegedy B., Umans C., “Group-theoretic algorithms for matrix multiplication”, Proc. Ann. IEEE Symp. FOCS, 2005, 379–388
[10] Feldman L. P., Nazarova I. A., Horoshilov A. V., “Parallel block algorithms of matrix multiplication for computer systems with distributed memories”, Naukovi pratsi Donets'kogo natsional'nogo tekhnichnogo universitetu, seriya “Informatika, kibernetika ta obchislyuval'na tekhnika”, 2007, no. 8(120), 297–308 (in Russian)
[11] Katona E., “Cellular algorithms for binary matrix operations”, LNCS, 111, 1981, 203–216
[12] Stojanovic N. M., Milovanovic I. Z., Stojcev M. K., Milovanovic E. I., “Matrix-vector multiplication on a fixed size unidirectional systolic array”, 8th Intern. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services (Nis, Serbia, 2007), 457–460
[13] Gentleman W. M., “Some complexity results for matrix computations on parallel processors”, J. ACM, 25:1 (1978), 112–115 | DOI | MR | Zbl
[14] Dekel E., Nassimi D., Sahni S., “Parallel matrix and graph algorithms”, SIAM J. Computing, 10:4 (1981), 657–675 | DOI | MR | Zbl
[15] Moraga C., “On a case of symbiosis between systolic arrays”, Integration, 2:3 (1984), 243–253 | DOI
[16] Umeo H., “Firing squad synchronization algorithms for two-dimensional cellular automata”, J. Cellular Automata, 4:1 (2009), 1–20 | MR | Zbl
[17] Mazoyer J., “A six-state minimal time solution to the firing squad synchronization problem”, Theor. Comput. Sci., 50:2 (1987), 183–238 | DOI | MR | Zbl
[18] Beklemishev D. V., A course of analytic geometry and linear algebra, Fizmatlit Publ., M., 2005, 304 pp. (in Russian)
[19] Arshon S., “Generalized Sarrus' rule”, Matematicheskiy Sbornik, 42:1 (1935), 121–128 (in Russian)
[20] Mahajan M., Vinay V., “Determinant: Combinatorics, Algorithms, and Complexity”, Chicago J. Theor. Comput. Sci., 1997 | MR
[21] Csanky L., “Fast parallel inversion algorithms”, SIAM J. Computing, 5:4 (1976), 818–823 | DOI | MR
[22] Berkowitz S. J., “On computing the determinant in small parallel time using a small number of processors”, Inform. Processing Lett., 18:3 (1984), 147–150 | DOI | MR | Zbl
[23] Beliakov G., Matiyasevich Y., “A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic”, BIT Numerical Math., 56:1 (2015), 33–50 | DOI | MR
[24] Marco A., Martínez J.-J., “Parallel computation of determinants of matrices with polynomial entries”, J. Symbolic Computation, 37:6 (2004), 749–760 | DOI | MR | Zbl
[25] Almalki S., Alzahrani S., Alabdullatif A., “New parallel algorithms for finding determinants of $N\times N$ matrices”, Proc. World Congress on Computer and Information Technology (WCCIT), 2013, 1–6
[26] , The MathWorks, Inc., 2019 http://www.mathworks.com/help/matlab/ref/det.html