Some methods for constructing MDS-matrices over~finite field
Prikladnaâ diskretnaâ matematika, no. 4 (2019), pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we propose new methods for constructing MDS-matrices over finite field by using recursive ones. For some element $\beta \in \text{GF}(2^ n)$ and naturals numbers $s$ and $k$, we study polynomials of the form $x^4 + \beta^k x^3 + \beta x^2 + \beta^k x + 1$ and $x^6 + \beta^s x^5 + \beta^2 x^4 + \beta x^3 + \beta^2 x^2 + \beta^s x+1$, for which, when $t=4,6$, the $t$-th power of it's companion matrices yields MDS-matrices with irreducible characteristic polynomial. Also, for some finite field elements $\beta$ and $\gamma$, we have found MDS-matrices of the form $\mathcal{M}^4_{(\beta,\gamma)}=(\beta\cdot\mathcal{I}_{4,4}\oplus \gamma\cdot\mathcal{J}_{4,4} \oplus\mathcal{H}_{4,4})^4$, where for appropriate ($4\times 4$)-binary matrices $\mathcal{I}_{4,4},\mathcal{J}_{4,4},\mathcal{H}_{4,4}$ the resulting linear mappings can be simplified by some special schemes, very attractive for the so-called lightweight cryptography. The multiplication of any vector by the matrices obtained in the paper can be represented by some circuits which improve the cost of this operation implementation in terms of bitwise XOR's.
Mots-clés : MDS-matrices, LFSR
Keywords: companion matrices, irreducible polynomials, finite field, lightweight cryptography, XOR-count.
@article{PDM_2019_4_a0,
     author = {O. Coy Puente and R. A. De La Cruz Jim\'enez},
     title = {Some methods for constructing {MDS-matrices} over~finite field},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--18},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/}
}
TY  - JOUR
AU  - O. Coy Puente
AU  - R. A. De La Cruz Jiménez
TI  - Some methods for constructing MDS-matrices over~finite field
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 5
EP  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/
LA  - ru
ID  - PDM_2019_4_a0
ER  - 
%0 Journal Article
%A O. Coy Puente
%A R. A. De La Cruz Jiménez
%T Some methods for constructing MDS-matrices over~finite field
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 5-18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/
%G ru
%F PDM_2019_4_a0
O. Coy Puente; R. A. De La Cruz Jiménez. Some methods for constructing MDS-matrices over~finite field. Prikladnaâ diskretnaâ matematika, no. 4 (2019), pp. 5-18. http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/

[1] Shannon C. E., “Communication theory of secrecy systems”, Bell System Technical J., 28:4 (1949), 656–715 | DOI | MR | Zbl

[2] Augot D., Finiasz M., “Direct construction of recursive MDS diffusion layers using shortened BCH codes”, Intern. Workshop on Fast Software Encryption, Springer, 2014, 3–17

[3] Guo J., Peyrin T., Poschmann A., “The PHOTON family of lightweight hash functions”, Ann. Cryptology Conf., Springer, 2011, 222–239 | Zbl

[4] Gupta K. C., Ray I. G., “On constructions of MDS matrices from companion matrices for lightweight cryptography”, Intern. Conf. Availability, Reliability, and Security, Springer, 2013, 29–43

[5] Sarkar S., Sim S. M., “A deeper understanding of the XOR count distribution in the context of lightweight cryptography”, Intern. Conf. Cryptology in Africa, Springer, 2016, 167–182 | MR | Zbl

[6] Toh D., Teo J., Khoo K., Sim S. M., “Lightweight MDS serial-type matrices with minimal fixed XOR count”, Intern. Conf. Cryptology in Africa, Springer, 2018, 51–71 | MR | Zbl

[7] Burov D. A., Pogorelov B. A., “The influence of linear mapping reducibility on the choice of round constants”, Matematicheskie Voprosy Kriptografii, 8:2 (2017), 51–64 | DOI | MR

[8] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Lan Publ., St. Petersburg–Moscow–Krasnodar, 2015 (in Russian)