Keywords: companion matrices, irreducible polynomials, finite field, lightweight cryptography, XOR-count.
@article{PDM_2019_4_a0,
author = {O. Coy Puente and R. A. De La Cruz Jim\'enez},
title = {Some methods for constructing {MDS-matrices} over~finite field},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--18},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/}
}
O. Coy Puente; R. A. De La Cruz Jiménez. Some methods for constructing MDS-matrices over finite field. Prikladnaâ diskretnaâ matematika, no. 4 (2019), pp. 5-18. http://geodesic.mathdoc.fr/item/PDM_2019_4_a0/
[1] Shannon C. E., “Communication theory of secrecy systems”, Bell System Technical J., 28:4 (1949), 656–715 | DOI | MR | Zbl
[2] Augot D., Finiasz M., “Direct construction of recursive MDS diffusion layers using shortened BCH codes”, Intern. Workshop on Fast Software Encryption, Springer, 2014, 3–17
[3] Guo J., Peyrin T., Poschmann A., “The PHOTON family of lightweight hash functions”, Ann. Cryptology Conf., Springer, 2011, 222–239 | Zbl
[4] Gupta K. C., Ray I. G., “On constructions of MDS matrices from companion matrices for lightweight cryptography”, Intern. Conf. Availability, Reliability, and Security, Springer, 2013, 29–43
[5] Sarkar S., Sim S. M., “A deeper understanding of the XOR count distribution in the context of lightweight cryptography”, Intern. Conf. Cryptology in Africa, Springer, 2016, 167–182 | MR | Zbl
[6] Toh D., Teo J., Khoo K., Sim S. M., “Lightweight MDS serial-type matrices with minimal fixed XOR count”, Intern. Conf. Cryptology in Africa, Springer, 2018, 51–71 | MR | Zbl
[7] Burov D. A., Pogorelov B. A., “The influence of linear mapping reducibility on the choice of round constants”, Matematicheskie Voprosy Kriptografii, 8:2 (2017), 51–64 | DOI | MR
[8] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Lan Publ., St. Petersburg–Moscow–Krasnodar, 2015 (in Russian)