Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs
Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 44-54
Voir la notice de l'article provenant de la source Math-Net.Ru
The implementation of Boolean functions by circuits of unreliable functional elements is considered in a complete finite basis, containing a function of the set $M$, where $M = {\bigcup\limits_{i=1}^4 \left(M_i \cup M_i^* \right)}$, $M_1 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2} \vee x_1^{\bar\sigma_1}x_2^{\bar\sigma_2}x_3^{\sigma_3} : \sigma_i \in \{0,1\}, i\in\{1,2,3\}\}$, $M_2 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2}x_3^{\sigma_3} \vee x_1^{\sigma_1}x_2^{\bar\sigma_2}x_3^{\bar\sigma_3} \vee
x_1^{\bar\sigma_1}x_2^{\sigma_2}x_3^{\bar\sigma_3}: \sigma _i \in \{0,1\},i \in \{1,2,3\}\}$, $M_3 = \text{Congr}\{\bar x_1 (x_2^{\sigma_2} \vee x_3^{\sigma_3}): \sigma _i \in \{0,1\},i \in \{1,2,3\}\}$, $M_4 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2}x_3^{\sigma_3} \vee x_1^{\bar\sigma_1}x_2^{\bar\sigma_2}x_3^{\bar\sigma_3}: \sigma
_i \in \{0,1\},i \in \{1,2,3\}\}$. The set $M_i^*$ is the set of functions, each of which is dual to some function of $M_i$. All functional elements independently of each other with the probability $\varepsilon \in (0, 1/2)$ are assumed to be prone to faults of type 0 at the element outputs. These faults are characterized by the fact that in good condition the functional element implements the function assigned to it, and in the faulty — constant 0. It is proved that almost any Boolean function can be implemented in a complete finite basis $B$, $B\cap M \neq\emptyset$, by an asymptotically optimal on reliability circuit working with unreliability asymptotically equal to $\varepsilon$ at $\varepsilon\to 0$.
Mots-clés :
circuit
Keywords: faults of type $0$ at the element outputs, unreliability, asymptotically optimal on reliability circuit, Boolean function.
Keywords: faults of type $0$ at the element outputs, unreliability, asymptotically optimal on reliability circuit, Boolean function.
@article{PDM_2019_3_a5,
author = {M. A. Alekhina and S. M. Grabovskaya and Yu. S. Gusynina},
title = {Sufficient conditions for implementation of {Boolean} functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {44--54},
publisher = {mathdoc},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/}
}
TY - JOUR AU - M. A. Alekhina AU - S. M. Grabovskaya AU - Yu. S. Gusynina TI - Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs JO - Prikladnaâ diskretnaâ matematika PY - 2019 SP - 44 EP - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/ LA - ru ID - PDM_2019_3_a5 ER -
%0 Journal Article %A M. A. Alekhina %A S. M. Grabovskaya %A Yu. S. Gusynina %T Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs %J Prikladnaâ diskretnaâ matematika %D 2019 %P 44-54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/ %G ru %F PDM_2019_3_a5
M. A. Alekhina; S. M. Grabovskaya; Yu. S. Gusynina. Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 44-54. http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/