Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs
Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The implementation of Boolean functions by circuits of unreliable functional elements is considered in a complete finite basis, containing a function of the set $M$, where $M = {\bigcup\limits_{i=1}^4 \left(M_i \cup M_i^* \right)}$, $M_1 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2} \vee x_1^{\bar\sigma_1}x_2^{\bar\sigma_2}x_3^{\sigma_3} : \sigma_i \in \{0,1\}, i\in\{1,2,3\}\}$, $M_2 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2}x_3^{\sigma_3} \vee x_1^{\sigma_1}x_2^{\bar\sigma_2}x_3^{\bar\sigma_3} \vee x_1^{\bar\sigma_1}x_2^{\sigma_2}x_3^{\bar\sigma_3}: \sigma _i \in \{0,1\},i \in \{1,2,3\}\}$, $M_3 = \text{Congr}\{\bar x_1 (x_2^{\sigma_2} \vee x_3^{\sigma_3}): \sigma _i \in \{0,1\},i \in \{1,2,3\}\}$, $M_4 = \text{Congr}\{x_1^{\sigma_1}x_2^{\sigma_2}x_3^{\sigma_3} \vee x_1^{\bar\sigma_1}x_2^{\bar\sigma_2}x_3^{\bar\sigma_3}: \sigma _i \in \{0,1\},i \in \{1,2,3\}\}$. The set $M_i^*$ is the set of functions, each of which is dual to some function of $M_i$. All functional elements independently of each other with the probability $\varepsilon \in (0, 1/2)$ are assumed to be prone to faults of type 0 at the element outputs. These faults are characterized by the fact that in good condition the functional element implements the function assigned to it, and in the faulty — constant 0. It is proved that almost any Boolean function can be implemented in a complete finite basis $B$, $B\cap M \neq\emptyset$, by an asymptotically optimal on reliability circuit working with unreliability asymptotically equal to $\varepsilon$ at $\varepsilon\to 0$.
Mots-clés : circuit
Keywords: faults of type $0$ at the element outputs, unreliability, asymptotically optimal on reliability circuit, Boolean function.
@article{PDM_2019_3_a5,
     author = {M. A. Alekhina and S. M. Grabovskaya and Yu. S. Gusynina},
     title = {Sufficient conditions for implementation of {Boolean} functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {44--54},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - S. M. Grabovskaya
AU  - Yu. S. Gusynina
TI  - Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 44
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/
LA  - ru
ID  - PDM_2019_3_a5
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A S. M. Grabovskaya
%A Yu. S. Gusynina
%T Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 44-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/
%G ru
%F PDM_2019_3_a5
M. A. Alekhina; S. M. Grabovskaya; Yu. S. Gusynina. Sufficient conditions for implementation of Boolean functions by asymptotically optimal on reliability circuits with the trivial estimate of unreliability in the case of faults of type $0$ at the element outputs. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 44-54. http://geodesic.mathdoc.fr/item/PDM_2019_3_a5/