On the construction of a semantically secure modification of the McEliece cryptosystem
Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The security of currently used asymmetric cryptosystems is based on the problems of discrete logarithm or discrete factorization. These problems can be effectively solved using Shor's algorithm on quantum computers. An alternative to such cryptosystems can be the McEliece cryptosystem. Its security is based on the problem of decoding a general linear code. In its original form, the McEliece cryptosystem is not semantically secure, from here the problem of constructing a semantically secure cryptosystem of the McEliece type is relevant. In the paper, the goal is to construct a McEliece type cryptosystem that has the IND-CPA property. Further, one can suppose that this system can be used as base cryptosystem for building the McEliece type encryption scheme with the IND-CCA2 property and an efficient information transfer rate.
Keywords: McEliece type cryptosystems, IND-CPA, semantic security, standart model.
@article{PDM_2019_3_a4,
     author = {Y. V. Kosolapov and O. Y. Turchenko},
     title = {On the construction of a semantically secure modification of the {McEliece} cryptosystem},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {33--43},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a4/}
}
TY  - JOUR
AU  - Y. V. Kosolapov
AU  - O. Y. Turchenko
TI  - On the construction of a semantically secure modification of the McEliece cryptosystem
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 33
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_3_a4/
LA  - en
ID  - PDM_2019_3_a4
ER  - 
%0 Journal Article
%A Y. V. Kosolapov
%A O. Y. Turchenko
%T On the construction of a semantically secure modification of the McEliece cryptosystem
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 33-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_3_a4/
%G en
%F PDM_2019_3_a4
Y. V. Kosolapov; O. Y. Turchenko. On the construction of a semantically secure modification of the McEliece cryptosystem. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 33-43. http://geodesic.mathdoc.fr/item/PDM_2019_3_a4/

[1] Kobara K., Imai H., “Semantically secure McEliece public-key cryptosystems — conversions for McEliece PKC”, LNCS, 1992, 2001, 19–35 | MR | Zbl

[2] Goldwasser S., Micali S., “Probabilistic encryption”, J. Computer and System Sciences, 38:2 (1984), 270–299 | DOI | MR

[3] Bellare M., Rogaway P., “Optimal asymmetric encryption — how to encrypt with RSA”, Advances in Cryptology — EUROCRYPT'94, Springer Verlag, 1995, 92–111 | DOI | MR | Zbl

[4] Shor P., “Algorithms for quantum computation: discrete logarithms and factoring.”, Proc. 35th Ann. Symp. FCS (Santa Fe, USA), IEEE Publ., 1994, 124–134 | MR

[5] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42:44 (1978), 114–116

[6] Bellare M., Rogaway P., “Random oracles are practical: A paradigm for designing efficient protocols”, Proc. 1st ACM conf. CCS'93, ACM, N.Y., 1993, 62–73

[7] Nojima R., Imai H., Kobara K., Morozov K., “Semantic security for the McEliece cryptosystem without random oracles”, Designs, Codes and Cryptography, 49:1–3 (2008), 289–305 | DOI | MR | Zbl

[8] Dottling N., Dowsley R., Muller-Quade J., Nascimento C. A. A., “A CCA2 secure variant of the McEliece cryptosystem”, IEEE Trans. Inform. Theory, 58:10 (2012), 6672–6680 | DOI | MR | Zbl

[9] Lenstra A. K., Verheul E. R., “Selecting cryptographic key sizes”, J. Cryptology, 14:4 (2001), 255–293 | DOI | MR | Zbl

[10] Bellare M., Desai A., Pointcheval D., Rogaway P., “Relations among notions of security for public-key encryption schemes”, Advances in Cryptology — CRYPTO'98, LNCS, 1462, 1998, 26–45 | Zbl

[11] Bleichenbacher D., “Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS#1”, Advances in Cryptology — CRYPTO'98, LNCS, 1462, 1998, 255–293

[12] Cramer R., Damgard I., Nielsen J. B., Secure Multiparty Computation and Secret Sharing, Cambridge University Press, Cambridge, 2015, 373 pp. | Zbl

[13] Kosolapov Y. V., Turchenko O. Y., “Application of one method of linear code recognition to the wire-tap channel”, Prikladnaya Diskretnaya Matematika, 2017, no. 35, 76–88 (in Russian) | DOI | MR

[14] Chabot C., “Recognition of a code in a noisy environment”, Proc. IEEE ISIT (Nice, France, 2007), 2211–2215

[15] Yardi A. D., Vijayakumaran S., “Detecting linear block codes in noise using the GLRT”, IEEE Intern. Conf. Communications (Budapest, Hungary, 2013), 4895–4899