Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_3_a3, author = {A. V. Seliverstov}, title = {On binary solutions to systems of equations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {26--32}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a3/} }
A. V. Seliverstov. On binary solutions to systems of equations. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 26-32. http://geodesic.mathdoc.fr/item/PDM_2019_3_a3/
[1] Seliverstov A. V., “Binary solutions to some systems of linear equations”, OPTA 2018, Communications in Computer and Information Science, 871, Springer, Cham, 2018, 183–192 | DOI
[2] Schrijver A., Theory of Linear and Integer Programming, John Wiley and Sons, N.Y., 1986 | MR | MR | Zbl
[3] Smolev V. V., “On an approach to the solution of a Boolean linear equation with positive integer coefficients”, Discrete Mathematics and Applications, 3:5 (1993), 523–530 | DOI | MR | Zbl
[4] Gál A., Jang J.-T., Limaye N., et al., “Space-efficient approximations for Subset Sum”, ACM Trans. Computation Theory, 8:4 (2016), 16 | DOI | MR
[5] Bringmann K., “A near-linear pseudopolynomial time algorithm for subset sum”, SODA'17 Proc. Twenty-Eighth Ann. ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 2017, 1073–1084 | DOI | MR | Zbl
[6] Koiliaris K., Xu C., “A faster pseudopolynomial time algorithm for subset sum”, SODA'17 Proc. Twenty-Eighth Ann. ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 2017, 1062–1072 | DOI | MR | Zbl
[7] Bateni M. H., Hajiaghayi M. T., Seddighin S., Stein C., “Fast algorithms for knapsack via convolution and prediction”, Proc. 50th Ann. ACM SIGACT Symp. on the Theory of Computing (STOC'18), ACM, N.Y., 2018, 1269–1282 | DOI | MR | Zbl
[8] Curtis V. V., Sanches C. A. A., “An improved balanced algorithm for the subset-sum problem”, Europ. J. Operat. Res., 275 (2019), 460–466 | DOI | MR | Zbl
[9] Cygan M., Mucha M., Węgrzycki K., Włodarczyk M., “On problems equivalent to $(\min,+)$-convolution”, ACM Trans. Algorithms, 15:1 (2019), 14 | DOI | MR | Zbl
[10] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[11] Rybalov A. N., “On generic complexity of decidability problem for Diophantine systems in the Skolem's form”, Prikladnaya Diskretnaya Matematika, 2017, no. 37, 100–106 (in Russian)
[12] Rybalov A. N., “On generic NP-completeness of the Boolean satisfiability problem”, Prikladnaya Diskretnaya Matematika, 2017, no. 36, 106–112 (in Russian) | DOI
[13] Rybalov A. N., “Relativized generic classes P and NP”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 100–104 (in Russian)
[14] Lyubetsky V. A., Gershgorin R. A., Gorbunov K. Yu., “Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming”, BMC Bioinformatics, 18:40 (2017) | DOI
[15] Schwartz J. T., “Fast probabilistic algorithms for verification of polynomial identities”, J. ACM, 27:4 (1980), 701–717 | DOI | MR | Zbl
[16] Bacher A., Bodini O., Hwang H.-K., Tsai T.-H., “Generating random permutations by coin-tossing: classical algorithms, new analysis, and modern implementation”, ACM Trans. Algorithms, 13:2 (2017), 24 | DOI | MR | Zbl