Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_3_a2, author = {V. G. Ryabov}, title = {On the degree of restrictions of $q$-valued logic functions to linear manifolds}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {13--25}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a2/} }
V. G. Ryabov. On the degree of restrictions of $q$-valued logic functions to linear manifolds. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 13-25. http://geodesic.mathdoc.fr/item/PDM_2019_3_a2/
[1] D'edonne Zh., Linear Algebra and Elementary Geometry, Nauka, M., 1972, 336 pp. (in Russian)
[2] Glukhov M. M., Shishkov A. B., Mathematical Logic. Discrete Functions. Theory of Algorithms, Lan Publ., St. Petersburg, 2012, 416 pp. (in Russian)
[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV Publ., M., 2003, 416 pp. (in Russian)
[4] Feller V., An Introduction to Probability Theory and its Applications, v. 1, Mir Publ., M., 1984, 528 pp. (in Russian) | MR
[5] Sachkov V. N., Combinatorial Methods in Discrete Mathematics, Nauka, M., 1977, 320 pp. (in Russian)
[6] Zhuravlev Yu. I., “Set-theoretical methods in the algebra of logic”, Problemy Kibernetiki, 8, 1962, 5–44 (in Russian)
[7] Logachev O. A., “On values of affinity level for almost all Boolean functions”, Prikladnaya Diskretnaya Matematika, 2010, no. 3(9), 17–21 (in Russian)
[8] Buryakov M. L., “Asymptotic bounds for the affinity level for almost all Boolean functions”, Discrete Math. Appl., 20:3 (2008), 73–79 (in Russian) | DOI | MR | Zbl
[9] Cheremushkin A. V., “Estimating the level of affinity of a quadratic form”, Discrete Math. Appl., 29:1 (2017), 114–125 (in Russian) | DOI | MR | Zbl