Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_3_a12, author = {Yu. L. Kostyuk}, title = {The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {104--112}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/} }
TY - JOUR AU - Yu. L. Kostyuk TI - The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision JO - Prikladnaâ diskretnaâ matematika PY - 2019 SP - 104 EP - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/ LA - ru ID - PDM_2019_3_a12 ER -
Yu. L. Kostyuk. The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 104-112. http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/
[1] Little J. D. C., Murty K. G., Sweeney D. W., Karel C., “An algorithm for the Traveling Salesman Problem”, Operat. Res., 1963, no. 11, 972–989 | DOI | Zbl
[2] Kostyuk Yu. L., “Effective implementation of algorithm for solving the travelling salesman problem by the branch-and-border method”, Prikladnaya Diskretnaya Matematika, 2013, no. 2(20), 78–90 (in Russian)
[3] Kostyuk Yu. L., “The travelling salesman problem: improved lover bounds in the branch-and-border method”, Prikladnaya Diskretnaya Matematika, 2013, no. 4(22), 73–81 (in Russian)
[4] Melamed I. I., Sergeev S. I., Sigal I. K., “The traveling salesman problem. Exact methods”, Autom. Remote Control, 50:10 (1989), 1303–1324 | MR | Zbl
[5] Melamed I. I., Sergeev S. I., Sigal I. K., “The traveling salesman problem. Approximate algorithm”, Autom. Remote Control, 50:11 (1989), 1459–1479 | MR | Zbl
[6] Papadimitriou C. H., Steiglitz K., Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, N.J., 1982 | MR | MR | Zbl
[7] Kostyuk Yu. L., A modified algorithm for solving the traveling salesman problem using the branch and bound method with an improved lower bound, which calculates an exact or approximate solution for a given guaranteed accuracy. Pascal program in Delphi system, April, 2017
[8] Aho A. V., Hopcroft J. E., Ullman J. D., The Design and Analysis of Computer Algorithms, Addison-Wesley Publ., Reading, Massachusetts, 1976 | MR