The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision
Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 104-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve the traveling salesman problem with distance matrix of order $n$, we propose an approximate algorithm based on the branch-and-border method. For clipping, an increased least estimate of the current partial solution is used. This guarantees a predetermined value $\varepsilon$ of the whole solution error. A computational experiment for distance matrices of four kinds of distributions was carried out. A uniform random (asymmetric) distribution as well as matrices of Euclidean distances between random points (a symmetric distribution) were used. In the latter case, a local search was additionally applied. Estimates for the power $p$ in the polynomial computational complexity $O(n^p)$ of the algorithm for various kinds of distributions and various values of error $\varepsilon$ are obtained. For a uniform random distribution and $n\leq 1000$, the obtained estimate of the power $p$ turned out to be close to $2.8$ and of an average value of error to be $1\,\%$.
Keywords: traveling salesman problem, branch-and-border method, approximate algorithm, local search, computational experiment.
@article{PDM_2019_3_a12,
     author = {Yu. L. Kostyuk},
     title = {The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {104--112},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/}
}
TY  - JOUR
AU  - Yu. L. Kostyuk
TI  - The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 104
EP  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/
LA  - ru
ID  - PDM_2019_3_a12
ER  - 
%0 Journal Article
%A Yu. L. Kostyuk
%T The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 104-112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/
%G ru
%F PDM_2019_3_a12
Yu. L. Kostyuk. The traveling salesman problem: approximate algorithm by branch-and-bound method with~guaranteed precision. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 104-112. http://geodesic.mathdoc.fr/item/PDM_2019_3_a12/

[1] Little J. D. C., Murty K. G., Sweeney D. W., Karel C., “An algorithm for the Traveling Salesman Problem”, Operat. Res., 1963, no. 11, 972–989 | DOI | Zbl

[2] Kostyuk Yu. L., “Effective implementation of algorithm for solving the travelling salesman problem by the branch-and-border method”, Prikladnaya Diskretnaya Matematika, 2013, no. 2(20), 78–90 (in Russian)

[3] Kostyuk Yu. L., “The travelling salesman problem: improved lover bounds in the branch-and-border method”, Prikladnaya Diskretnaya Matematika, 2013, no. 4(22), 73–81 (in Russian)

[4] Melamed I. I., Sergeev S. I., Sigal I. K., “The traveling salesman problem. Exact methods”, Autom. Remote Control, 50:10 (1989), 1303–1324 | MR | Zbl

[5] Melamed I. I., Sergeev S. I., Sigal I. K., “The traveling salesman problem. Approximate algorithm”, Autom. Remote Control, 50:11 (1989), 1459–1479 | MR | Zbl

[6] Papadimitriou C. H., Steiglitz K., Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, N.J., 1982 | MR | MR | Zbl

[7] Kostyuk Yu. L., A modified algorithm for solving the traveling salesman problem using the branch and bound method with an improved lower bound, which calculates an exact or approximate solution for a given guaranteed accuracy. Pascal program in Delphi system, April, 2017

[8] Aho A. V., Hopcroft J. E., Ullman J. D., The Design and Analysis of Computer Algorithms, Addison-Wesley Publ., Reading, Massachusetts, 1976 | MR