Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_3_a11, author = {M. S. Tarkov}, title = {Informational capacity of the {Hopfield} network with~quantized weights}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {97--103}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_3_a11/} }
M. S. Tarkov. Informational capacity of the Hopfield network with~quantized weights. Prikladnaâ diskretnaâ matematika, no. 3 (2019), pp. 97-103. http://geodesic.mathdoc.fr/item/PDM_2019_3_a11/
[1] Haykin S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Inc., 1999
[2] Hopfield J., “Neural networks and physical systems with emergent collective computational abilities”, Proc. NAS USA, 79 (1982), 2554–2558 | DOI | MR | Zbl
[3] Personnaz L., Guyon I., Dreyfus G., “Collective computational properties of neural networks: New learning mechanisms”, Phys. Rev. Ser. A, 34:5 (1986), 4217–4228 | DOI | MR
[4] Michel A. N., Liu D., Qualitative Analysis and Synthesis of Recurrent Neural Networks, Marcel Dekker Inc., N.Y., 2002 | MR | Zbl
[5] Chua L., “Memristor — the missing circuit element”, IEEE Trans. Circuit Theory, 18 (1971), 507–519 | DOI
[6] Strukov D. B., Snider G. S., Stewart D. R., Williams R. S., “The missing memristor found”, Nature, 453 (2008), 80–83 | DOI
[7] He W., Sun H., Zhou Y., et al., “Customized binary and multi-level HfO$_{2-x}$-based memristors tuned by oxidation conditions”, Scientific Reports, 7 (2017), 10070 | DOI
[8] Yu S., Gao B., Fang Z., et al., “A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation”, Adv. Mater., 25 (2013), 1774–1779 | DOI
[9] Tarkov M. S., “Construction of a Hamming network based on a crossbar with binary memristors”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 105–113 (in Russian) | MR
[10] Tarkov M. S., “Reduction of synapses in the Hopfield autoassociative memory”, Prikladnaya Diskretnaya Matematika, 2017, no. 37, 107–113 (in Russian)
[11] Folli V., Leonetti M., Ruocco G., “On the maximum storage capacity of the Hopfield model”, Frontiers in Comput. Neuroscience, 10 (2017), 144 http://www.frontiersin.org | DOI