Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_2_a8, author = {V. V. Bykova and Ch. M. Mongush}, title = {Decompositional approach to research of~formal~contexts}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {113--126}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a8/} }
V. V. Bykova; Ch. M. Mongush. Decompositional approach to research of~formal~contexts. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 113-126. http://geodesic.mathdoc.fr/item/PDM_2019_2_a8/
[1] Birkhoff G., Lattice Theory, AMS, Providence, 1967, 423 pp. | MR | MR | Zbl
[2] Ganter B., Wille R., Formal Concept Analyses: Mathematical Foundations, Springer Science and Business Media, 2012, 314 pp. | MR
[3] Ganter B., Obiedkov S. A., Conceptual Exploration, Springer, Berlin–Heidelberg, 2016, 315 pp. | MR | Zbl
[4] Kuznetsov S. O., Obiedkov S. A., “Comparing Performance of Algorithms for Generating Concept Lattices”, J. Experimental and Theoretical Artificial Intelligence, 14:2 (2002), 189–216 | DOI | Zbl
[5] Simon A. A., “Best-of-Breed approach for designing a fast algorithm for computing fixpoints of Galois Connections”, Inform. Sci., 295:2 (2015), 633–649 | MR | Zbl
[6] Aslanyan L., Alipour D., Heidari M., “Comparative analysis of attack graphs”, Mathem. Problems of Computer Sci., 2013, no. 40, 85–95
[7] Heydari M., Morales L., Shields C. O., Sudborough I. H., “Computing Cross Associations for Attack Graphs and other Applications”, Proc. 40th Ann. Hawaii Intern. Conf. on System Sciences (Big Island, Hawaii, 2007), 270
[8] Li J., Liu G., Li H., Wong L., “Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms”, J. IEEE Trans. Knowledge and Data Engineering, 19 (2007), 1625–1637 | DOI
[9] Bein D., Morales L., Bein W., et al., “Clustering and the biclique partition problem”, Proc. 41st Ann. Hawaii Intern. Conf. on System Sciences (Big Island, Hawaii, 2008), 475–483
[10] Garey M., Johnson D., Computers and Intractability, Freeman and Co, N.Y., 1979, 340 pp. | MR | Zbl
[11] Duginov O. I., “The complexity of the problems of covering a graph with the smallest number of complete bipartite graphs”, Proc. Institute of Mathematics, 22:1 (2014), 51–69 (in Russian) | Zbl
[12] Prisner E., “Bicliques in graphs I: bounds on their number”, Combinatorica, 20 (2000), 109–117 | DOI | MR | Zbl
[13] Wood D. R., “On the maximum number of cliques in a graph”, Graphs and Combinatorics, 2007, no. 23, 1–16 | MR | Zbl
[14] Moon J. W., Moser L., “On cliques in graphs”, J. Mathematics, 1965, no. 3, 23–28 | MR | Zbl
[15] Pottosina S., Pottosin Y., Sedliak B., “Finding maximal complete bipartite subgraphs in a graph”, J. Appl. Math., 1:1 (2008), 75–81 | MR
[16] Vania M. F. Dias, Celina M. H. de Figueiredo, Jayme L. S., “Generating bicliques of a graph in lexicographic order”, Theor. Comput. Sci., 337 (2005), 240–248 | DOI | MR | Zbl
[17] Dyukova E. V., Zhuravlev Yu. I., “Discrete analysis of feature descriptions in high-dimensional recognition tasks”, J. Comput. Mathem. and Mathem. Physics, 40:8 (2000), 1264–1278 (in Russian) | MR | Zbl
[18] Dyukova E. V., Inyakin A. S., “About classification procedures based on classroom construction”, J. Comput. Mathem. and Mathem. Physics, 43:12 (2003), 1884–1895 (in Russian) | MR | Zbl
[19] Bykova V. V., “Mathematical methods for analyzing recursive algorithms”, J. Siberian Federal University. Mathematics and Physics, 3:1 (2008), 372–384 (in Russian) | MR
[20] Harzheim E., Ordered Sets, Springer, New York, 2005, 390 pp. | MR | Zbl
[21] Mongush Ch. M., Bykova V. V., The program FCACorpus of conceptual modeling of Tuvan texts by the methods of the formal concepts analysis, Certificate of state registration of computer programs No 2018618907, issued by the Federal Service for Intellectual Property of the Russian Federation, 2018 (in Russian)