Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_2_a7, author = {A. N. Rybalov}, title = {On generic undecidability of {Hilbert's} tenth problem for polynomial trees}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {107--112}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a7/} }
A. N. Rybalov. On generic undecidability of Hilbert's tenth problem for polynomial trees. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 107-112. http://geodesic.mathdoc.fr/item/PDM_2019_2_a7/
[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Matiyasevich Yu. V., “Diophantineity of enumerable sets”, Doklady Akademii Nauk USSR, 191:2 (1970), 279–282 (in Russian) | Zbl
[3] Myasnikov A., Romankov V., “Diophantine cryptography in free metabelian groups: Theoretical base”, Groups, Complexity, Cryptology, 6:2 (2014), 103–120 | DOI | MR | Zbl
[4] Roman'kov V. A., “Diophantine cryptography over infinite groups”, Prikladnaya Diskretnaya Matematika, 2012, no. 2(16), 15–42 (in Russian)
[5] Roman'kov V. A., Algebraic Cryptography, OmSU Publ., Omsk, 2013 (in Russian)
[6] Rybalov A., “Generic complexity of the Diophantine problem”, Groups, Complexity, Cryptology, 5:1 (2013), 25–30 | DOI | MR | Zbl
[7] Rybalov A., “On generic undecidability of Hilbert Tenth problem”, Vestnik Omskogo Universiteta, 2011, no. 4, 19–22 (in Russian)
[8] Rybalov A., “On generic complexity of decidability problem for diophantine systems in the Skolem's form”, Prikladnaya Diskretnaya Matematika, 2017, no. 37, 100–106 (in Russian)
[9] Knuth D. E., The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts, 1997 | MR