Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_2_a5, author = {D. V. Zagumennov and V. V. Mkrtichyan}, title = {On application of algebraic geometry codes of~$L$-construction in copy protection}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {67--93}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a5/} }
TY - JOUR AU - D. V. Zagumennov AU - V. V. Mkrtichyan TI - On application of algebraic geometry codes of~$L$-construction in copy protection JO - Prikladnaâ diskretnaâ matematika PY - 2019 SP - 67 EP - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2019_2_a5/ LA - ru ID - PDM_2019_2_a5 ER -
D. V. Zagumennov; V. V. Mkrtichyan. On application of algebraic geometry codes of~$L$-construction in copy protection. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 67-93. http://geodesic.mathdoc.fr/item/PDM_2019_2_a5/
[1] Stinson D. R., Wei R., “Combinatorial properties and constructions of traceability schemes and frameproof codes”, SIAM J. Discr. Math., 11:1 (1998), 41–53 | DOI | MR | Zbl
[2] Staddon J. N., Stinson D. R., Wei R., “Combinatorial properties of frameproof and traceability codes”, IEEE Trans. Inform. Theory, 47:3 (2001), 1042–1049 | DOI | MR | Zbl
[3] Silverberg A., Staddon J., Walker J., “Applications of list decoding to tracing traitors”, IEEE Trans. Inform. Theory, 49:5 (2003), 1312–1318 | DOI | MR | Zbl
[4] Deundyak V. M., Mkrtichyan V. V., “Research of applying bounds of the information protection scheme based on RS-codes”, Diskretn. Anal. Issled. Oper., 18:3 (2011), 21–38 (in Russian) | MR | Zbl
[5] Deundyak V. M., Evpak S. A., Mkrtichyan V. V., “Analysis of properties of $q$-ary Reed–Muller error-correcting codes viewed as codes for copyright protection”, Probl. Inform. Transm., 51:4 (2015), 398–408 | DOI | MR | Zbl
[6] Goppa V. D., “Algebraic-geometric codes”, Izv. Akad. Nauk SSSR. Ser. Mat., 46:4 (1982), 762–781 (in Russian) | MR
[7] Guruswami V., Sudan M., “Improved decoding of Reed–Solomon and algebraic-geometric codes”, Foundations of Computer Science, IEEE, Palo Alto, 1998, 28–37 | MR
[8] Fernandez M., Soriano M., “Identification of traitors in algebraic-geometric traceability codes”, IEEE Trans. Signal Proc., 52:10 (2004), 3073–3077 | DOI | MR | Zbl
[9] Vladut S. G., Nogin D. Y., Tsfasman M. A., Algebraic Geometric Codes. Basic Notions, MCCME Publ., M., 2003, 504 pp. (in Russian)
[10] Fiat A., Naor M., “Broadcast encryption”, LNCS, 773, 1994, 480–491 | Zbl
[11] Chor B., Fiat A., Naor M., “Tracing traitors”, LNCS, 839, 1994, 257–270 | Zbl
[12] Hoholdt T., van Lindt J., Pellikaan R., “Algebraic geometry codes”, Handbook of Coding Theory, v. 1, eds. V. S. Pless, W. C. Huffman, R. A. Brualdi, Elsevier, Amsterdam, 1998, 871–961 | MR | Zbl
[13] Lang S., Algebra, Springer, 2002 | Zbl
[14] Hess F., “Computing Riemann–Roch spaces in algebraic function fields and related topics”, J. Symbolic Comput., 33:4 (2002), 425–445 | DOI | MR | Zbl
[15] Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/
[16] Shokrollahi A., Wasserman H., “List decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 45:2 (1999), 432–437 | DOI | MR | Zbl
[17] Van Der Geer G., Van Der Vlugt M., “Tables of curves with many points”, Mathematics of Computation, 69:230 (2000), 797–810 | MR | Zbl
[18] MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, Elsevier, 1977, 744 pp. | MR