@article{PDM_2019_2_a1,
author = {I. A. Pushkarev and V. A. Byzov},
title = {Donaghey's transformation: carousel effects and~tame~components},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {12--33},
year = {2019},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a1/}
}
I. A. Pushkarev; V. A. Byzov. Donaghey's transformation: carousel effects and tame components. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 12-33. http://geodesic.mathdoc.fr/item/PDM_2019_2_a1/
[1] Stanley R. P., Enumerative Combinatorics, v. 2, Cambridge University Press, N.Y., 1999, 585 pp. | MR
[2] Tutte W. T., Graph Theory, Addison-Wesley Publishing Company, California, 1984, 333 pp. | MR | Zbl
[3] Pushkarev I. A., Byzov V. A., “Donaghey's transformation: an elementary approach”, J. Math. Sci., 196:5 (2014), 199–215 | DOI | MR | Zbl
[4] Donaghey R., “Automorphisms on Catalan trees and bracketings”, J. Combinatorial Theory. Ser. B, 29:1 (1980), 75–90 | DOI | MR | Zbl
[5] Knuth D. E., The Art of Computer Programming, P. 1, v. 4A, Combinatorial Algorithms, Addison-Wesley Professional, New Jersey, 2011, 883 pp. | MR | Zbl
[6] Callan D., “A bijection on Dyck paths and its cycle structure”, Electronic J. Combinatorics, 14:1 (2007), R28 | MR | Zbl
[7] The On-Line Encyclopedia of Integer Sequences, , 2003 http://www.oeis.org/A080070
[8] Pushkarev I. A., “On a transformation of plane trees”, Matematicheskiy Vestnik Pedvuzov i Universitetov Volgo-Vyatskogo Regiona, 2006, no. 8, 92–99 (in Russian)
[9] Bergeron F., Labelle G., Leroux P., Combinatorial Species and Tree-like Structures, Cambridge University Press, N.Y., 1997, 457 pp. | MR
[10] Shapiro L. W., “The cycle of six”, The Fibonacci Quarterly, 17:3 (1979), 253–259 | MR | Zbl
[11] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Professional, New Jersey, 1994, 672 pp. | MR | MR | Zbl