Properties of components for some classes of~vectorial~Boolean functions
Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 5-11
Voir la notice de l'article provenant de la source Math-Net.Ru
In the class of invertible vectorial Boolean functions in $n$ variables with coordinate functions depending on all variables, we consider the subclasses $\mathcal{K}_{n}$ and $\mathcal{K}'_{n}$, where the functions are obtained using $n$ independent transpositions, respectively, from the identity permutation and from the permutation with coordinate functions essentially dependent on exactly one variable. We show that, for any $F=(f_1\ldots f_n)\in\mathcal{K}_{n}\cup\mathcal{K}'_{n}$ and $i\in\{1,\ldots,n\}$, the coordinate function $f_i$ has a single linear variable, each component function $vF$ with vector $v\in{\mathbb F}_2^n$ of a weight greater than $1$ has no fictitious and linear variables , the nonlinearity $N_{F}$, the degree $\deg F$, and the component algebraic immunity AI$_\text{comp}(F)$ are $2$, $n-1$, and $2$ respectively.
Keywords:
vectorial Boolean functions, invertible functions, nonlinearity, component algebraic immunity.
@article{PDM_2019_2_a0,
author = {I. A. Pankratova},
title = {Properties of components for some classes {of~vectorial~Boolean} functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--11},
publisher = {mathdoc},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/}
}
I. A. Pankratova. Properties of components for some classes of~vectorial~Boolean functions. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 5-11. http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/