Properties of components for some classes of~vectorial~Boolean functions
Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of invertible vectorial Boolean functions in $n$ variables with coordinate functions depending on all variables, we consider the subclasses $\mathcal{K}_{n}$ and $\mathcal{K}'_{n}$, where the functions are obtained using $n$ independent transpositions, respectively, from the identity permutation and from the permutation with coordinate functions essentially dependent on exactly one variable. We show that, for any $F=(f_1\ldots f_n)\in\mathcal{K}_{n}\cup\mathcal{K}'_{n}$ and $i\in\{1,\ldots,n\}$, the coordinate function $f_i$ has a single linear variable, each component function $vF$ with vector $v\in{\mathbb F}_2^n$ of a weight greater than $1$ has no fictitious and linear variables , the nonlinearity $N_{F}$, the degree $\deg F$, and the component algebraic immunity AI$_\text{comp}(F)$ are $2$, $n-1$, and $2$ respectively.
Keywords: vectorial Boolean functions, invertible functions, nonlinearity, component algebraic immunity.
@article{PDM_2019_2_a0,
     author = {I. A. Pankratova},
     title = {Properties of components for some classes {of~vectorial~Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--11},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/}
}
TY  - JOUR
AU  - I. A. Pankratova
TI  - Properties of components for some classes of~vectorial~Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 5
EP  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/
LA  - ru
ID  - PDM_2019_2_a0
ER  - 
%0 Journal Article
%A I. A. Pankratova
%T Properties of components for some classes of~vectorial~Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 5-11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/
%G ru
%F PDM_2019_2_a0
I. A. Pankratova. Properties of components for some classes of~vectorial~Boolean functions. Prikladnaâ diskretnaâ matematika, no. 2 (2019), pp. 5-11. http://geodesic.mathdoc.fr/item/PDM_2019_2_a0/

[1] Agibalov G. P., “Substitution block ciphers with functional keys”, Prikladnaya Diskretnaya Matematika, 2017, no. 38, 57–65 | MR

[2] Agibalov G. P., Pankratova I. A., “Asymmetric cryptosystems on Boolean functions”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 23–33 | MR

[3] Agibalov G. P., “ElGamal cryptosystems on Boolean functions”, Prikladnaya Diskretnaya Matematika, 2018, no. 42, 57–65 | MR

[4] Pankratova I. A., “On the invertibility of vector Boolean functions”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2015, no. 8, 35–37 (in Russian)

[5] Pankratova I. A., “Construction of invertible vectorial Boolean functions with coordinates depending on given number of variables”, Proc. CSIST'16, BSU Publ., Minsk, 2016, 519–521

[6] Karpova L. A., Pankratova I. A., “Properties of coordinate functions for a class of permutations on $\mathbb{F}_2^n$”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2017, no. 10, 38–40 (in Russian)

[7] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., Boolean Functions in Coding Theory and Cryptology, MCCME Publ., M., 2004, 472 pp. (in Russian)

[8] Carlet C., Vectorial Boolean Functions for Cryptography, Cambridge University Press, Cambridge, 2010, 93 pp. | Zbl