Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_1_a7, author = {V. M. Fomichev}, title = {On improved universal estimation of exponents of~digraphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {115--123}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_1_a7/} }
V. M. Fomichev. On improved universal estimation of exponents of~digraphs. Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 115-123. http://geodesic.mathdoc.fr/item/PDM_2019_1_a7/
[1] Frobenius F. G., “Über Matrizen aus nicht negativen Elementen”, Sitzungsber K. Preuss. Akad. Wiss., 1912, 456–477 | Zbl
[2] Dulmage A. L., Mendelsohn N. S., “Gaps in the exponent set of primitive matrices”, Illinoise J. Math., 1964, no. 8, 642–656 | DOI | MR | Zbl
[3] Fomichev V. M., Avezova Y. E., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and non-Negative matrices”, Diskretnyy Analiz i Issledovanie Operatsiy, 25:3 (2018), 95–125 (in Russian) | Zbl
[4] Perkins P., “A theorem on regular graphs”, Pacific J. Math., 2 (1961), 1529–1533 | DOI | MR
[5] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 1950, no. 52, 642–648 | DOI | MR | Zbl
[6] Holladay J. C., Varga R. S., “On powers of non-negative matrices”, Proc. Amer. Math. Soc., 9 (1958), 631 | DOI | MR | Zbl
[7] Fomichev V. M., “The estimates of exponents for primitive graphs”, Prikladnaya Diskretnaya Matematika, 2011, no. 2(12), 101–112 (in Russian)
[8] Fomichev V. M., “Computational complexity of the original and extended Diophantine Frobenius problem”, Diskretnyy Analiz i Issledovanie Operatsiy, 24:3 (2017), 104–124 (in Russian) | Zbl
[9] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005 | MR | Zbl
[10] Fomichev V. M., Mel'nikov D. A., Cryptographic Methods of Information Security, v. 1, Mathematical Aspects, YuRAYT Publ., M., 2016, 209 pp. (in Russian)
[11] Fomichev V. M., “The new universal estimation for exponents of graphs”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 78–84 (in Russian)