Authentication encryption based on authentication code with secrecy
Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The idea of authentication encryption cryptosystem is proposed. This cryptosystem is a modification of an authentication code with secrecy considered in previous papers of the author and based on Reed–Solomon error-correcting code. The essence of the modification is to use a non-repeating initialization vector and derivative key for encryption of each message. Estimations of cryptosystem security as an authentication code with secrecy at a one-time usage of the key are received: the encryption security is estimated by proximity to perfect encryption, and the authentication security — by probabilities of imitation and substitution success. Considerations for selection of parameters and estimation of cryptosystem security to chosen plaintext attacks at multiple usage of the key as well as distinction attacks are provided.
Keywords: authentication code with secrecy, authentication encryption.
@article{PDM_2019_1_a3,
     author = {A. Yu. Zubov},
     title = {Authentication encryption based on authentication code with secrecy},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {60--69},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Zubov
TI  - Authentication encryption based on authentication code with secrecy
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 60
EP  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_1_a3/
LA  - ru
ID  - PDM_2019_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Zubov
%T Authentication encryption based on authentication code with secrecy
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 60-69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_1_a3/
%G ru
%F PDM_2019_1_a3
A. Yu. Zubov. Authentication encryption based on authentication code with secrecy. Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 60-69. http://geodesic.mathdoc.fr/item/PDM_2019_1_a3/

[1] Kabatianskii G. A., Johansson G., Smeets B., “On the cardinality of systematic A-codes via error correcting codes”, IEEE Trans. Inform. Theory, IT-42:2 (1996), 566–578 | DOI | MR | Zbl

[2] Zubov A. Yu., “Almost perfect ciphers and authentication codes”, Prikladnaya Diskretnaya Matematika, 2011, no. 4(14), 28–33 (in Russian)

[3] Zubov A. Yu., “About the concept of $\varepsilon$-perfect cipher”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 45–52 (in Russian) | MR

[4] Zubov A. Yu., “Authentication codes with secrecy”, Matematicheskie Voprosy Kriptografii, 8:3 (2017), 5–40 (in Russian) | DOI | MR

[5] Zubov A. Yu., “On the estimation of secrecy of the type GCM AEAD-cryptosystem”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 49–62 (in Russian) | DOI | MR

[6] Rivest R. R., “Permutation polynomials modulo $2^w$”, Finite Fields Their Appl., 7:2 (2001), 287–292 | DOI | MR | Zbl

[7] Zaec M. V., “Build of permutations using variation-coordinate polynomiality functions over primary deduction ring”, Matematicheskie Voprosy Kriptografii, 6:1 (2015), 5–32 (in Russian) | DOI | MR

[8] McGrew D. A., Viega J., “The security and performance of Galois/Counter mode of operation”, LNCS, 3348, 2004, 343–355 | MR | Zbl