Bernoulli's discrete periodic functions
Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 16-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of known and some new properties of the discrete periodic Bernoulli functions $b_n(j)$ of order $n$ introduced by V. N. Malozemov and viewed as elements $x=x(0)x(1)\ldots x(N-1)\in\mathbb C_0^N\subset \mathbb C^N$ with the normalization condition $\sum\limits_{k=0}^{N-1} x(k)=0$. It is proved that the operator $\Delta:\mathbb C_0^N\to\mathbb C_0^N$ where $\Delta [x]=y=y(0)y(1)\ldots y(N-1)$, $y(k)=x(k+1)-x(k)$, is a bijection and $\Delta[b_n]=b_{n-1}$. Moreover, according to Malozemov's result, the set of the discrete periodic Bernoulli functions is an infinite cyclic group relative to the cyclic convolution $x*y(s)=\sum\limits_{j=0}^{N-1}x(j)y(s-j)$ with a neutral element $b_0$, and $b_n * b_m=b_{n+m}$. It is proved that either the set of $N-1$ cyclic shifts $x^{k\to}(j)=x(j-k)$ of any discrete periodic Bernoulli function or the set $\{b_m, b_{m+1},\ldots ,b_{m+N-2}\}$ yields a basis of the space $\mathbb C_0^N$. The generating function $\sum\limits_{n=0}^{\infty} b_n t^n$ of a sequence of discrete periodic Bernoulli functions is calculated. Formulas $\sum\limits_{k=1}^{N-1}\sin^{2m}({\pi k}/{N})$, $m\in\mathbb Z$, for calculating the sums of even degrees of sinuses at equidistant nodes of a circle are found by means of these functions and the discrete Fourier transform. It has been established that a cyclic shift by 1 and the multiplication by $ -N$ transform these functions of positive order into special polynomials $P_n(k)$, which were introduced by Bespalov and Korobov and have become popular as the Korobov polynomials of the first kind in the form $K_n(x)=n!P_n(x)$. We have calculated the Korobov numbers $K_n=-n!\cdot N\cdot b_n(1)$ up to $K_{13}$ and the Korobov polynomials up to $K_7(x)$ for any array size (parameter) $N$.
Mots-clés : discrete Fourier transform
Keywords: cyclic convolution,finite difference, generating function, Korobov numbers and Korobov polynomials.
@article{PDM_2019_1_a1,
     author = {M. S. Bespalov},
     title = {Bernoulli's discrete periodic functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {16--36},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_1_a1/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Bernoulli's discrete periodic functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 16
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_1_a1/
LA  - ru
ID  - PDM_2019_1_a1
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Bernoulli's discrete periodic functions
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 16-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_1_a1/
%G ru
%F PDM_2019_1_a1
M. S. Bespalov. Bernoulli's discrete periodic functions. Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 16-36. http://geodesic.mathdoc.fr/item/PDM_2019_1_a1/

[1] Ber M. G., Malozemov V. N., “The best formulas for approximate calculastion of a discrete Fourier transform”, Comput. Math. and Math. Physics, 32:11 (1992), 1533–1544 | MR | Zbl

[2] V. N. Malozemov (red.), Selected Chapters of Discrete Harmonic Analysis and Geometric Modeling, VVM Publ., St. Petersburg, 2014, 605 pp. (in Russian)

[3] Malozemov V. N., Macharskiy S. M., Basics of Discrete Harmonic Analysis, Lane Publ., St. Petersburg, 2012, 304 pp. (in Russian)

[4] Malozemov V. N., Pevniy A. B., “Discrete periodic splines and their computational application”, Comput. Math. and Math. Physics, 38:8 (1998), 1181–1192 | MR | Zbl

[5] Bespalov M. S., “Representation for sums of even negative degrees of sines in equivdistant nodes”, Russian Mathematics, 40:8 (1996), 4–10 | MR | Zbl

[6] Korobov N. M., “Special polynomials and its application”, Diofantovy Pribligeniya. Matematicheskie Zapiski, v. 2, 1996, 77–89 (in Russian)

[7] Ustinov A. V., “On summation and interpolation formulas”, Chebyshevskii Sbornik, 1:1 (2001), 52–71 (in Russian) | MR | Zbl

[8] Ustinov A. V., “Polynomials of Korobov and umbral analysis”, Chebyshevskii Sbornik, 4:4(8) (2003), 137–152 (in Russian) | MR | Zbl

[9] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, Cambridge, 1986, 662 pp. | MR | MR

[10] Trakhman A. M., Trakhman V. A., Fundamentals of the Theory of Signals of Finite Intervals, Soviet Radio Publ., M., 1975, 208 pp. (in Russian)

[11] K. A. Rybnikov (ed.), Combinatorial Analysis. Tasks and Exercises, Nauka Publ., M., 1982, 368 pp. (in Russian) | MR

[12] Bespalov M. S., “On generating functions for same trigonometric sums”, Proc. XXV Sci. Conf. VPI, v. 1, VPI Publ., Vladimir, 1990, 40 pp. (in Russian)

[13] Guzev M. A., Ustinov A. V., “Mechanical characteristics of molecular dynamics model and Korobov polynomials”, Dal'nevostochnyi Matematicheskii Zhurnal, 16:2 (2016), 39–43 (in Russian) | MR | Zbl

[14] Zorich V. A., Mathematical Analysis, v. 2, Nauka Publ., M., 1984, 640 pp. (in Russian) | MR

[15] Bespalov M. S., “Trigonometric sums for problems of molecular dynamics”, Intern. Conf. Math. Control Theory and Mechanics, Arcaim Publ., Vladimir, 2017, 36–37 (in Russian)

[16] Bespalov M. S., Panina N. A., Program calculation exact value for sums of even negative degrees of sines in equivdistant nodes, Program for computation no. 2011616549, 22.08.2011

[17] Dolgy D. V., Kim D. S., Kim T., “Korobov polynomials of the first kind”, Sb. Math., 208:1 (2017), 60–74 | DOI | DOI | MR | Zbl

[18] Roman S. M., Rota G.-C., “The umbral calculus”, Adv. Math., 27 (1978), 95–188 | DOI | MR | Zbl