Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2019_1_a0, author = {S. A. Belov}, title = {An algorithm for finding the minimum degree of~a~polynomial over~a~finite field for~a~function over~a~vector space depending on~the~choice of~an~irreducible polynomial}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--15}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2019_1_a0/} }
TY - JOUR AU - S. A. Belov TI - An algorithm for finding the minimum degree of~a~polynomial over~a~finite field for~a~function over~a~vector space depending on~the~choice of~an~irreducible polynomial JO - Prikladnaâ diskretnaâ matematika PY - 2019 SP - 5 EP - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2019_1_a0/ LA - ru ID - PDM_2019_1_a0 ER -
%0 Journal Article %A S. A. Belov %T An algorithm for finding the minimum degree of~a~polynomial over~a~finite field for~a~function over~a~vector space depending on~the~choice of~an~irreducible polynomial %J Prikladnaâ diskretnaâ matematika %D 2019 %P 5-15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2019_1_a0/ %G ru %F PDM_2019_1_a0
S. A. Belov. An algorithm for finding the minimum degree of~a~polynomial over~a~finite field for~a~function over~a~vector space depending on~the~choice of~an~irreducible polynomial. Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 5-15. http://geodesic.mathdoc.fr/item/PDM_2019_1_a0/
[1] Youssef A. M., Gong G., “On the interpolation attacks on block ciphers”, Intern. Workshop on Fast Software Encryption, Berlin–Heidelberg, 2000, 109–120
[2] Lidl R., Niederreiter H., Finite Fields, v. 20, Cambridge University Press, Cambridge, 1997 | MR
[3] McWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, Elsevier, N.Y., 1977 | MR
[4] Sorenson J., “An analysis of Lehmer's Euclidean GCD algorithm”, Proc. Intern. Symp. on Symbolic and Algebraic Computation (Montreal, Canada, 1995), 257–397
[5] Carlet C., “Boolean functions for cryptography and error correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama, P. Hammer, Cambridge University Press, Cambridge, 2010, 257–397 | DOI | MR | Zbl
[6] Jakobsen T., Knudsen L. R., “The interpolation attack on block ciphers”, Intern. Workshop on Fast Software Encryption, Springer, 1997, 28–40 | DOI | MR | Zbl
[7] GOST 28147-89. Information Processing Systems. Cryptographic Protection. Algorithm of Cryptographic Transformation, Standards Publ., M., 1989 (in Russian)
[8] Popov V., Kurepkin I., Leontiev S., RFC 4357: Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001 and GOST R 34.11-94 Algorithms, IETF, M., 2006
[9] Standaert F. X., Piret G., Rouvroy G., et al., “ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware”, Intern. Workshop on Fast Software Encryption, Berlin–Heidelberg, 2004, 279–298 | DOI
[10] De Canniere C., Sato H., Watanabe D., Hash Function Luffa: Specification. Submission to NIST SHA-3 Competition, , 2008 http://www.hitachi.com/rd/yrl/crypto/luffa
[11] Sorkin A., “Lucifer, a cryptographic algorithm”, Cryptologia, 8:1 (1984), 22–42 | DOI
[12] Biham E., Anderson R., Knudsen L., “Serpent: A new block cipher proposal”, Intern. Workshop on Fast Software Encryption, Berlin–Heidelberg, 1998, 222–238 | DOI | MR | Zbl
[13] Daemen J., Rijmen V., The Design of Rijndael. AES — the Advanced Encryption Standard, Springer Science Business Media, Berlin–Heidelberg, 2013 | MR
[14] Bogdanov A., Knudsen L. R., Leander G., et al., “PRESENT: An ultra-lightweight block cipher”, Intern. Workshop on Cryptographic Hardware and Embedded Systems, Berlin–Heidelberg, 2007, 450–466 | Zbl
[15] Information Technology. Cryptographic Protection of Information. Block Ciphers, Standartinform Publ., M., 2015 (in Russian)