Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_4_a8, author = {Y. P. Hazdiuk and V. V. Zhikharevich and O. M. Nikitina and S. E. Ostapov}, title = {The unicellular microorganisms {``Amoeba} {Proteus''} locomotion simulation with the use of movable cellular automata method}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {104--119}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/} }
TY - JOUR AU - Y. P. Hazdiuk AU - V. V. Zhikharevich AU - O. M. Nikitina AU - S. E. Ostapov TI - The unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method JO - Prikladnaâ diskretnaâ matematika PY - 2018 SP - 104 EP - 119 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/ LA - ru ID - PDM_2018_4_a8 ER -
%0 Journal Article %A Y. P. Hazdiuk %A V. V. Zhikharevich %A O. M. Nikitina %A S. E. Ostapov %T The unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method %J Prikladnaâ diskretnaâ matematika %D 2018 %P 104-119 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/ %G ru %F PDM_2018_4_a8
Y. P. Hazdiuk; V. V. Zhikharevich; O. M. Nikitina; S. E. Ostapov. The unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 104-119. http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/
[1] De Bruyn P. P. H., “Theories of amoeboid movement”, Quarterly Rev. Biology, 22:1 (1947), 1–24 | DOI
[2] Howard J., Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Massachusetts, 2001, 384 pp.
[3] Shih Y.-L., Rothfield L., “The bacterial cytoskeleton”, Microbiology and Molecular Biology Rev., 70:3 (2006), 729–754 | DOI
[4] Romanovskiy Yu. M., Stepanova N. V., Chernavskiy D. S., Mathematical Modeling in Biophysics, Nauka Publ., M., 1975, 344 pp. (in Russian) | MR
[5] Chernavskiy D. S., “The problem of origin of life and thinking from the point of view of modern physics”, Uspekhi Fizicheskikh Nauk, 170:2 (2000), 157–183 (in Russian) | DOI
[6] De Cerqueira Gatti M. A., de Lucena C. J. P., Cell Simulation: an Agent-based Software Engineering Approach, Monografias em Ciencia da Computacao, 18/08, Rio de Janeiro, 2008, 17 pp.
[7] Romanovskiy Yu. M., Teplov V. A., “The physical basis of cell movement. Mechanisms of amoeboid locomotion self-organization”, Uspekhi Fizicheskikh Nauk, 165:5 (1995), 555–578 (in Russian) | DOI
[8] Schlick T., Molecular Modeling and Simulation: An Interdisciplinary Guide, Ed. 2, Springer Science and Business Media, N.Y., 2010, 723 pp. | MR | Zbl
[9] Nishimura S. I., Sasai M., “Modulation of the reaction rate of regulating protein induces large morphological and motional change of amoebic cell”, J. Theor. Biol., 2007, no. 245, 230–237 | DOI | MR
[10] Nishimura S. I., Ueda M., Sasai M., “Non-Brownian dynamics and strategy of amoeboid cell locomotion”, Phys. Rev. E, 85 (2012) http://www.biomedsearch.com/nih/Non-Brownian-dynamics-strategy-amoeboid/22680500.html | DOI
[11] Nishimura S. I., Ueda M., Sasai M., “Cortical factor feedback model for cellular locomotion and cytofission”, PLoS Comput Biol., 5:3 (2009), e1000310 | DOI
[12] Umedachi T., Ito K., Ishiguro A., “Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control”, Adaptive Behavior., 23 (2015), 97–108 | DOI
[13] Umedachi T., Horikiri S., Kobayashi R., Ishiguro A., “Enhancing adaptability of amoeboid robot by synergetically coupling two decentralized controllers inspired by true slime mold”, Adaptive Behavior., 23 (2015), 109–121 | DOI
[14] Graham-Rowe D., “Amoebalike robots for search and rescue”, MIT Technology Rev., 2007, March 29 http://www.technologyreview.com/s/407603/amoebalike-robots-for-search-and-rescue/
[15] Doursat R., Sayama H., Michel O., “A review of morphogenetic engineering”, Natural Computing, 12 (2013), 517–535 | DOI | MR
[16] Bandman O. L., “Cellular-Automata models of natural processes, implementation on supercomputers”, Prikladnaya Diskretnaya Matematika, 2017, no. 35, 102–121 (in Russian)
[17] Psakhie S. G., Ostermeyer G. P., Dmitriev A. I., et al., “Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description”, Phys. Mesomechanics, 3:2 (2000), 5–12
[18] Psakhie S. G., Horie Y., Ostermeyer G. P., et al., “Movable cellular automata method for simulating materials with mesostructure”, Theor. Appl. Fracture Mechanics, 37:1–3 (2001), 311–334 | DOI
[19] Shilko E. V., Psakhie S. G., Schmauder S., et al., “Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure”, Comput. Mater. Sci., 102 (2015), 267–285 | DOI
[20] Zhykharevych V. V., Hazdiuk K. P., “Algorithm for determining the neighboring elements of a set of movable cellular automata under the condition of a fixed number of neighbors”, Bull. National Technical University Kharkov Polytechnic Institute. Ser. Computer Science and Modeling, 2015, no. 33, 75–82 (in Russian)