The unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method
Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 104-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, the method of movable cellular automata is applied to the modeling of amoeba-like locomotion. A significant advantage of this method is the possibility of transition from a static grid to the concept of neighbors. A unicellular biological organism “Amoeba Proteus” was chosen as an object. The basic principles of locomotion, namely the movement of the amoeba on the basis of cytoskeletal transformations inside the cell, are considered. This approach most accurately describes the process of locomotion in the living cell. The rules of cellular automata interactions were found for the constructed model according to the concept of neighbors. As a result, a computer model imitating amoeboid locomotion was obtained.
Keywords: movable cellular automata, amoeba-like movement, computer simulation, neighborhood principle.
@article{PDM_2018_4_a8,
     author = {Y. P. Hazdiuk and V. V. Zhikharevich and O. M. Nikitina and S. E. Ostapov},
     title = {The  unicellular microorganisms {``Amoeba} {Proteus''} locomotion simulation with the use of movable cellular automata method},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {104--119},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/}
}
TY  - JOUR
AU  - Y. P. Hazdiuk
AU  - V. V. Zhikharevich
AU  - O. M. Nikitina
AU  - S. E. Ostapov
TI  - The  unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 104
EP  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/
LA  - ru
ID  - PDM_2018_4_a8
ER  - 
%0 Journal Article
%A Y. P. Hazdiuk
%A V. V. Zhikharevich
%A O. M. Nikitina
%A S. E. Ostapov
%T The  unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 104-119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/
%G ru
%F PDM_2018_4_a8
Y. P. Hazdiuk; V. V. Zhikharevich; O. M. Nikitina; S. E. Ostapov. The  unicellular microorganisms ``Amoeba Proteus'' locomotion simulation with the use of movable cellular automata method. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 104-119. http://geodesic.mathdoc.fr/item/PDM_2018_4_a8/

[1] De Bruyn P. P. H., “Theories of amoeboid movement”, Quarterly Rev. Biology, 22:1 (1947), 1–24 | DOI

[2] Howard J., Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Massachusetts, 2001, 384 pp.

[3] Shih Y.-L., Rothfield L., “The bacterial cytoskeleton”, Microbiology and Molecular Biology Rev., 70:3 (2006), 729–754 | DOI

[4] Romanovskiy Yu. M., Stepanova N. V., Chernavskiy D. S., Mathematical Modeling in Biophysics, Nauka Publ., M., 1975, 344 pp. (in Russian) | MR

[5] Chernavskiy D. S., “The problem of origin of life and thinking from the point of view of modern physics”, Uspekhi Fizicheskikh Nauk, 170:2 (2000), 157–183 (in Russian) | DOI

[6] De Cerqueira Gatti M. A., de Lucena C. J. P., Cell Simulation: an Agent-based Software Engineering Approach, Monografias em Ciencia da Computacao, 18/08, Rio de Janeiro, 2008, 17 pp.

[7] Romanovskiy Yu. M., Teplov V. A., “The physical basis of cell movement. Mechanisms of amoeboid locomotion self-organization”, Uspekhi Fizicheskikh Nauk, 165:5 (1995), 555–578 (in Russian) | DOI

[8] Schlick T., Molecular Modeling and Simulation: An Interdisciplinary Guide, Ed. 2, Springer Science and Business Media, N.Y., 2010, 723 pp. | MR | Zbl

[9] Nishimura S. I., Sasai M., “Modulation of the reaction rate of regulating protein induces large morphological and motional change of amoebic cell”, J. Theor. Biol., 2007, no. 245, 230–237 | DOI | MR

[10] Nishimura S. I., Ueda M., Sasai M., “Non-Brownian dynamics and strategy of amoeboid cell locomotion”, Phys. Rev. E, 85 (2012) http://www.biomedsearch.com/nih/Non-Brownian-dynamics-strategy-amoeboid/22680500.html | DOI

[11] Nishimura S. I., Ueda M., Sasai M., “Cortical factor feedback model for cellular locomotion and cytofission”, PLoS Comput Biol., 5:3 (2009), e1000310 | DOI

[12] Umedachi T., Ito K., Ishiguro A., “Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control”, Adaptive Behavior., 23 (2015), 97–108 | DOI

[13] Umedachi T., Horikiri S., Kobayashi R., Ishiguro A., “Enhancing adaptability of amoeboid robot by synergetically coupling two decentralized controllers inspired by true slime mold”, Adaptive Behavior., 23 (2015), 109–121 | DOI

[14] Graham-Rowe D., “Amoebalike robots for search and rescue”, MIT Technology Rev., 2007, March 29 http://www.technologyreview.com/s/407603/amoebalike-robots-for-search-and-rescue/

[15] Doursat R., Sayama H., Michel O., “A review of morphogenetic engineering”, Natural Computing, 12 (2013), 517–535 | DOI | MR

[16] Bandman O. L., “Cellular-Automata models of natural processes, implementation on supercomputers”, Prikladnaya Diskretnaya Matematika, 2017, no. 35, 102–121 (in Russian)

[17] Psakhie S. G., Ostermeyer G. P., Dmitriev A. I., et al., “Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description”, Phys. Mesomechanics, 3:2 (2000), 5–12

[18] Psakhie S. G., Horie Y., Ostermeyer G. P., et al., “Movable cellular automata method for simulating materials with mesostructure”, Theor. Appl. Fracture Mechanics, 37:1–3 (2001), 311–334 | DOI

[19] Shilko E. V., Psakhie S. G., Schmauder S., et al., “Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure”, Comput. Mater. Sci., 102 (2015), 267–285 | DOI

[20] Zhykharevych V. V., Hazdiuk K. P., “Algorithm for determining the neighboring elements of a set of movable cellular automata under the condition of a fixed number of neighbors”, Bull. National Technical University Kharkov Polytechnic Institute. Ser. Computer Science and Modeling, 2015, no. 33, 75–82 (in Russian)