A resource-efficient algorithm for study the growth in finite two-generator groups of exponent~$5$
Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 94-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

For studying the growth in finite groups, we present a resource-efficient algorithm which is a modification of our early algorithm. The purpose of the modification is to minimize the space complexity of the algorithm and to save its time complexity at an acceptable level. The main idea of the modified algorithm is to take in the given group $G$ a suitable subgroup $N$ such that $|N|\ll|G|$, to calculate growth functions for all cosets $gN$ independently of each other, to summarize these functions and to obtain the growth function for the group $G$. By using this algorithm, we calculate the growth functions for the group $B_{18}$ with two generators $a_1$ and $a_2$ and for the groups $B_{18}$, $B_{19}$ with four generators $a_1$, $a_1^{-1}$, $a_2$ and $a_2^{-1}$, where $B_k=B_0(2,5)/\langle a_{k+1},\ldots,a_{34}\rangle$ is a quotient of the group $B_0(2,5)=\langle a_1,a_2 \rangle$ which is the largest two-generator Burnside group of exponent 5 (its order is $5^{34}$), $a_1$ and $a_2$ are generators of $B_0(2, 5)$ and $a_3,\ldots,a_{34}$ are the commutators of $B_0(2, 5)$, so each element in $B_0(2, 5)$ can be represented as $a_1^{\alpha_1}\cdot a_2^{\alpha_2}\cdot\ldots\cdot a_{34}^{\alpha_{34}}$, $\alpha_i \in \mathbb{Z}_5$, $i=1,2,\ldots,34$. Based on these data, we formulate a hypothesis about the diameters of Cayley graphs of the group $B_0(2, 5)$ with generating sets $A_2=\{ a_1,a_2 \}$ and $A_4 = \{ a_1,a_1^{-1},a_2,a_2^{-1}\}$, namely, $D_{A_2}(B_0(2,5)) \approx 105$ and $D_{A_4}(B_0(2,5)) \approx 69$.
Keywords: Burnside group, the Cayley graph, the growth function.
@article{PDM_2018_4_a7,
     author = {A. A. Kuznetsov and A. S. Kuznetsova},
     title = {A resource-efficient algorithm for study the growth in finite two-generator groups of exponent~$5$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {94--103},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a7/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
AU  - A. S. Kuznetsova
TI  - A resource-efficient algorithm for study the growth in finite two-generator groups of exponent~$5$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 94
EP  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_4_a7/
LA  - ru
ID  - PDM_2018_4_a7
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%A A. S. Kuznetsova
%T A resource-efficient algorithm for study the growth in finite two-generator groups of exponent~$5$
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 94-103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_4_a7/
%G ru
%F PDM_2018_4_a7
A. A. Kuznetsov; A. S. Kuznetsova. A resource-efficient algorithm for study the growth in finite two-generator groups of exponent~$5$. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 94-103. http://geodesic.mathdoc.fr/item/PDM_2018_4_a7/

[1] Kuznetsov A. A., “An algorithm for computation of the growth functions in finite two-generated groups of exponent 5”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 116–125 (in Russian)

[2] Kuznetsov A. A., Kuznetsova A. S., “A parallel algorithm for study of the Cayley graphs of permutetion groups”, Vestnik SibSAU, 2014, no. 1, 34–39 (in Russian)

[3] Even S., Goldreich O., “The Minimum Length Generator Sequence is NP-Hard”, J. Algorithms, 1981, no. 2, 311–313 | DOI | MR | Zbl

[4] Skiena S., The Algorithm Design Manual, Springer Science+Business Media, London, 2008, 730 pp. | MR | Zbl

[5] Sims C., “Fast multiplication and growth in groups”, Proc. 1998 Intern. Symp. Symbolic Algebraic Computation, 1998, 165–170 | Zbl

[6] Havas G., Wall G., Wamsley J., “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 1974, no. 10, 459–470 | DOI | MR | Zbl

[7] Sims C., Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994, 628 pp. | MR | Zbl

[8] Holt D., Eick B., O'Brien E., Handbook of Computational Group Theory, Chapman Hall/CRC Press, Boca Raton, 2005, 514 pp. | MR | Zbl

[9] Kuznetsov A. A., Kuznetsova A. S., “Fast multiplication in finite two-generated groups of exponent five”, Prikladnaya Diskretnaya Matematika, 2013, no. 1, 110–116 (in Russian)