Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_4_a6, author = {P. G. Klyucharev}, title = {Deterministic methods of {Ramanujan} graph construction for use in cryptographic algorithms based on generalized cellular automata}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {76--93}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a6/} }
TY - JOUR AU - P. G. Klyucharev TI - Deterministic methods of Ramanujan graph construction for use in cryptographic algorithms based on generalized cellular automata JO - Prikladnaâ diskretnaâ matematika PY - 2018 SP - 76 EP - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2018_4_a6/ LA - ru ID - PDM_2018_4_a6 ER -
%0 Journal Article %A P. G. Klyucharev %T Deterministic methods of Ramanujan graph construction for use in cryptographic algorithms based on generalized cellular automata %J Prikladnaâ diskretnaâ matematika %D 2018 %P 76-93 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2018_4_a6/ %G ru %F PDM_2018_4_a6
P. G. Klyucharev. Deterministic methods of Ramanujan graph construction for use in cryptographic algorithms based on generalized cellular automata. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 76-93. http://geodesic.mathdoc.fr/item/PDM_2018_4_a6/
[1] Klyucharev P. G., “Block ciphers based on generalized cellular automata”, Science and Education of the Bauman MSTU, 2012, no. 2, 361–374 (in Russian)
[2] Klyucharev P. G., “Cryptographic hash functions based on generalized cellular automata”, Science and Education of the Bauman MSTU, 2013, no. 1, 161–172 (in Russian)
[3] Toffoli T., Margolus N., Cellular Automata Machines, MIT Press, 1987, 276 pp.
[4] Kauffman S. A., “Metabolic stability and epigenesis in randomly constructed genetic net”, J. Theor. Biol., 1969, no. 22, 437–467 | DOI | MR
[5] Suhinin B. M., “Construction of pseudorandom binary sequence generators based on cellular automata”, Science and Education of the Bauman MSTU, 2010, no. 9 | Zbl
[6] Davidoff G., Sarnak P., Valette A., Elementary Number Theory, Group Theory and Ramanujan Graphs, London Mathematical Society Student Texts, 55, Cambridge University Press, Cambridge, 2003, 144 pp. | MR | Zbl
[7] Hoory S., Linial N., Wigderson A., “Expander graphs and their applications”, Bull. Amer. Math. Soc., 43:4 (2006), 439–562 | DOI | MR
[8] Lubotzky A., Phillips R., Sarnak P., “Ramanujan graphs”, Combinatorica, 8:3 (1988), 261–277 | DOI | MR | Zbl
[9] Krebs M., Shaheen A., Expander Families and Cayley Graphs: A Beginner's Guide, Oxford University Press, Oxford, 2011, 258 pp. | MR | Zbl
[10] Sarnak P., Some Applications of Modular Forms, Cambridge Tracts in Mathematics, 99, Cambridge University Press, Cambridge, 1990, 111 pp. | MR | Zbl
[11] Chung F., Spectral Graph Theory, Amer. Math. Soc., 1997, 207 pp. | MR | Zbl
[12] Sarnak P., What is ... an expander?, Notices Amer. Math. Soc., 51, 762–770 | MR
[13] Lubotzky A., Discrete Groups, Expanding Graphs and Invariant Measures, Springer Science Business Media, 2010, 196 pp. | MR
[14] Lubotzky A., Phillips R., Sarnak P., “Explicit expanders and the Ramanujan conjectures”, Proc. 18th Ann. ACM Symp. on Theory of Computing, ACM, 1986, 240–246
[15] Grove L., Classical Groups and Geometric Algebra, Fields Institute Communications, 39, Amer. Math. Soc., 2002, 169 pp. | MR
[16] Humphreys J., A Course in Group Theory, Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 1996, 279 pp. | MR | Zbl
[17] James G., Liebeck M., Representations and Characters of Groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 2001, 458 pp. | MR | Zbl
[18] Lanski C., Concepts in Abstract Algebra, Amer. Math. Soc., 2005, 545 pp. | MR
[19] Kargapolov M. I., Merzlyakov Yu. I., Foundations of Group Theory, Nauka, Fizmatlit Publ., M., 1996, 287 pp. (in Russian) | MR
[20] Morgenstern M., “Existence and explicit constructions of $q+1$ regular Ramanujan graphs for every prime power $q$”, J. Combinatorial Theory. Ser. B, 62:1 (1994), 44–62 | DOI | MR | Zbl
[21] Petit C., On Graph-Based Cryptographic Hash Functions, PhD Thesis, Catholic University of Louvain, 2009, 286 pp. http://www0.cs.ucl.ac.uk/staff/c.petit/files/thesis.pdf
[22] Nikkel T., Ramanujan Graphs, Master's Thesis, University of Manitoba, 2007, 112 pp. http://mspace.lib.umanitoba.ca/bitstream/handle/1993/9146/thesis.pdf
[23] Pizer A. K., “Ramanujan graphs and Hecke operators”, Bull. Amer. Math. Soc., 23:1 (1990), 127–137 | DOI | MR | Zbl
[24] Charles D. X., Lauter K. E., Goren E. Z., “Cryptographic hash functions from expander graphs”, J. Cryptology, 22:1 (2009), 93–113 | DOI | MR | Zbl
[25] Silverman J., Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, N.Y., 2013, 528 pp. | MR
[26] Blake I., Seroussi G., Smart N., Elliptic Curves in Cryptography, Lecture Note Series, Cambridge University Press, Cambridge, 1999, 204 pp. | MR | Zbl
[27] Silverman J., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, N.Y., 2009, 402 pp. | DOI | MR | Zbl
[28] Washington L., Elliptic Curves: Number Theory and Cryptography, Discrete Mathematics and its Applications, 2nd Ed., CRC Press, Boca Raton, 2008, 536 pp. | DOI | MR | Zbl
[29] Vélu J., “Isogénies entre courbes elliptiques”, C. R. Acad. Sci. Paris Sér. AB, 273 (1971), A238–A241 | MR
[30] Shumow D., Isogenies of Elliptic Curves: A Computational Approach, Master's Thesis, University of Washington, 2009, 78 pp., arXiv: abs/0910.5370
[31] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl
[32] W. Bosma, J. Cannon, C. Fieker, A. Steel (eds.), Handbook of Magma Functions, Edition 2.20, , 2014, 5583 pp. https://www.math.uzh.ch/sepp/magma-2.19.8-cr/Handbook.pdf
[33] Klyucharev P. G., “Construction of pseudorandom functions based on generalized cellular automata”, Science and Education of the Bauman MSTU, 2012, no. 10, 263–274 (in Russian)