Cryptanalysis of $2$-cascade finite automata generator with functional key
Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 48-56
Voir la notice de l'article provenant de la source Math-Net.Ru
A cryptographic generator under consideration is a serial connection $G= A_1\cdot A_2$ of two finite state machines (finite automata) $A_1 = (\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous) and $A_2 = (\mathbb{F}_2,\mathbb{F}_2^n,\mathbb{F}_2, g_2, f_2)$.
The key of the generator is the function $f_1$ and possibly the initial states $x(1),y(1)$ of the automata $A_1,A_2$. The cryptanalysis problem for $G$ is the following: given an output sequence $\gamma = z(1)z(2) \ldots z(l)$, find the generator's key. Two algorithms for analysis of $A_2$ are presented, they allow to find a preimage $u(1)\ldots u(l)$ of $\gamma$ in general case and in the case when $A_2$ is the Moore automaton with the transition function $g_2(u, y) = \neg ug^\delta(y) + ug^\tau(y)$ for some $g:\mathbb{F}_2^m\rightarrow\mathbb{F}_2^m$ and $\delta,\tau\in\mathbb{N}$. This preimage is an input to $A_2$ and an output from $A_1$. The values $u(t)$ equal the values $f_1(x(t))$ where $x(t)$ is the state of $A_1$ at a time $t$, $t=1,2, \ldots, l$.
If the initial state $x(1)$ and a function class $C_1$ containing $f_1$ are known, then $f_1$ can be determined by its specifying in the class $C_1$.
Keywords:
finite automaton, cryptographic generator, $(\delta, \tau)$-step generator, DSS method.
Mots-clés : cryptanalysis
Mots-clés : cryptanalysis
@article{PDM_2018_4_a3,
author = {I. V. Borovkova and I. A. Pankratova and E. V. Semenova},
title = {Cryptanalysis of $2$-cascade finite automata generator with functional key},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {48--56},
publisher = {mathdoc},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a3/}
}
TY - JOUR AU - I. V. Borovkova AU - I. A. Pankratova AU - E. V. Semenova TI - Cryptanalysis of $2$-cascade finite automata generator with functional key JO - Prikladnaâ diskretnaâ matematika PY - 2018 SP - 48 EP - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2018_4_a3/ LA - ru ID - PDM_2018_4_a3 ER -
I. V. Borovkova; I. A. Pankratova; E. V. Semenova. Cryptanalysis of $2$-cascade finite automata generator with functional key. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 48-56. http://geodesic.mathdoc.fr/item/PDM_2018_4_a3/