Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_4_a1, author = {V. O. Mironkin}, title = {On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {6--17}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/} }
TY - JOUR AU - V. O. Mironkin TI - On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping JO - Prikladnaâ diskretnaâ matematika PY - 2018 SP - 6 EP - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/ LA - ru ID - PDM_2018_4_a1 ER -
%0 Journal Article %A V. O. Mironkin %T On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping %J Prikladnaâ diskretnaâ matematika %D 2018 %P 6-17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/ %G ru %F PDM_2018_4_a1
V. O. Mironkin. On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 6-17. http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/
[1] Kolchin V. F., Random Mappings, Nauka Publ., M., 1984 (in Russian) | MR
[2] Harris B., “Probability distributions related to random mapping”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl
[3] Dalal A., Schmutz E., “Compositions of random functions on a finite set”, Electr. J. Comb., 9 (2002), R26 | MR | Zbl
[4] Flajolet P., Odlyzko A., “Random mapping statistics”, LNCS, 434, 1989, 329–354 | MR
[5] Zubkov A. M., Mironkin V. O., “Distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping”, Mat. Vopr. Kriptogr., 8:4 (2017), 63–74 (in Russian) | DOI | MR
[6] Mironkin V. O., Mikhailov V. G., “On the sets of images of $k$-fold iteration of uniform random mapping”, Mat. Vopr. Kriptogr., 9:3 (2018), 99–108 (in Russian) | DOI | MR
[7] Mironkin V. O., “Investigation of properties and characteristics of iteration of random mapping”, Obozrenie Prikladnoj i Promyshlennoj Matematiki, 21:1 (2014), 70–73 (in Russian)
[8] Mironkin V. O., “Probabilistic characteristics of layers in a random mapping draph”, Obozrenie Prikladnoj i Promyshlennoj Matematiki, 22:1 (2015), 80–82 (in Russian) | MR
[9] Mironkin V. O., “The joint probability of lengths of aperiodicity segments of two vertices in the graph of iteration of random mapping”, Obozrenie Prikladnoj i Promyshlennoj Matematiki, 22:4 (2015), 482–484 (in Russian)
[10] Mironkin V. O., “On singularities of the structure of the graph of iteration of random mapping”, Obozrenie Prikladnoj i Promyshlennoj Matematiki, 23:1 (2016), 57–62 (in Russian) | MR
[11] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, LNCS, 2729, 2003, 617–630 | MR | Zbl
[12] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton-Watson process”, Mat. Vopr. Kriptogr., 5:2 (2014), 103–108 | DOI
[13] Pilshchikov D. V., “On the limiting mean values in probabilistic models of time-memory-data tradeoff methods”, Mat. Vopr. Kriptogr., 6:2 (2015), 59–65 | DOI | MR
[14] Mironkin V. O., “On some probabilistic characteristics of key derevation function “CRYPTOPRO KEY MESHING””, Problemy Informacionnoj Bezopasnosti. Komp'yuternye Sistemy, 2015, no. 4, 140–146 (in Russian)
[15] Tokareva N. N., Symmetric Cryptography, A Short Course: a Tutorial, NSU Publ., Novosibirsk, 2012 (in Russian)
[16] Sachkov V. N., Probabilistic Methods in Combinatorial Analysis, Nauka Publ., M., 1978 (in Russian)
[17] Zubkov A. M., Serov A. A., “Images of subset of finite set under iterations of random mappings”, Discr. Math., 26:4 (2014), 43–50 (in Russian) | DOI
[18] Pilshchikov D. V., “Asymptotic behaviour of the complete preimage cardinality for the image of a random set under iterations of mappings of a finite set”, Mat. Vopr. Kriptogr., 8:1 (2017), 95–106 (in Russian) | DOI