On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping
Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 6-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $k,n\in\mathbb{N}$, $x_0\in S=\left\{1,\ldots,n\right\}$, and $ f:S\to S$, define $x_{i+1}=f^k(x_i)$ for every $i\in\{0,1,\ldots\}$ and $\tau_{f^k}(x_0)$ as the least integer $i$ such that $f^k(x_i)=x_j$ for some $j$, $j$. For the local probability $\mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}$ and for the distribution function $F_{\tau_{f^k}\left(x_0\right)}\left( z \right)$, the following estimates are obtained. If $kz$, then \begin{gather}\notag \mathsf{P}\left\{\tau_{f^k}\left(x_0\right){=}z \right\}>\frac 1n{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}}{{\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{{{m}^{2}}}{2n}}}}\;{+}{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\\ \end{smallmatrix}}}{\frac1{r+k}\text{e}^{-\left( 1+\frac{r}{n} \right)\frac{r^2}{2n}}\left( 1{-}{\left( 1{-}\frac{r+k}{n} \right)}^k \right)},\\ \notag \mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}\frac1n{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}+{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\\ \end{smallmatrix}}}{\frac{1}{r}{\text{e}^{-\frac{{{\left( r-1 \right)}^{2}}}{2n}}}\left( 1-{{\left( 1-\frac{r}{n} \right)}^k} \right)}, \end{gather} where $r=m+\left( z-\dfrac{m}{(m,k)}-1 \right)k$. If $k^2z\leq n$, then \begin{equation}\notag \begin{gathered} \frac1n\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}{\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{m^2}{2n}}}+\left( 1-\dfrac{k^2z}{2n} \right)\dfrac{k}{n}\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\\ \end{smallmatrix}}{\text{e}^{-\left( 1+\frac{r}{n} \right)\frac{r^2}{2n}}} \\ \mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}\frac1n\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}+\dfrac{k}{n}\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\\ \end{smallmatrix}}{\text{e}^{-\frac{{\left( r-1 \right)}^2}{2n}}}, \end{gathered} \end{equation} which, for a prime $k$, is expressed in elementary functions and efficiently computable for used in practice values of $n$ ($2^{256}$ and more). Also, if $ kz\leq\sqrt{n}$, then $$\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\leq z \\ \end{smallmatrix}}{\dfrac{r}{n}\left( 1-\dfrac{r\left( m+r \right)}{2n} \right){\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{m^2}{2n}}}}{\tau_{f^k}\left(x_0\right)}(z)\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\leq z \\ \end{smallmatrix}}{\dfrac{r+1}{n}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}},$$ where $r=m+\left( z-\dfrac{m}{(m,k)} \right)k$. In some cases, the obtained results allow to estimate the allowable period of usage of the encryption keys generated by iterative algorithms and to build criteria for quality assessment of random sequences.
Keywords: equiprobable random mapping, iteration of random mapping, graph of a mapping, aperiodicity segment, local probability
Mots-clés : distribution.
@article{PDM_2018_4_a1,
     author = {V. O. Mironkin},
     title = {On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {6--17},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/}
}
TY  - JOUR
AU  - V. O. Mironkin
TI  - On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 6
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/
LA  - ru
ID  - PDM_2018_4_a1
ER  - 
%0 Journal Article
%A V. O. Mironkin
%T On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 6-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/
%G ru
%F PDM_2018_4_a1
V. O. Mironkin. On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 6-17. http://geodesic.mathdoc.fr/item/PDM_2018_4_a1/