New families of multiplicative circulant networks
Prikladnaâ diskretnaâ matematika, no. 3 (2018), pp. 76-84

Voir la notice de l'article provenant de la source Math-Net.Ru

For circulant networks, the problem of the maximal attainable number of nodes under given degree and diameter of their graphs is considered. A research of multiplicative circulant networks with generators in the form of $(1,t,t^2,\dots, t^{k-1})$ for odd $t\ge5$ is presented. On the base of this research, two new families of multiplicative circulant networks of orders $n=(t+1)(1+t+\ldots+t^{k-1})/2+t^{k-1}$ for odd dimensions $k\ge3$ and diameters $d\equiv0\bmod k$ and even dimensions $k\ge4$ and diameters $d\equiv0\bmod k$ and $d\equiv0\bmod k/2$ are constructed. The orders of these graphs are larger than orders of graphs of all known families of multiplicative circulant networks under the same dimensions and diameters.
Keywords: multiplicative circulant networks, diameter, maximum order of a graph.
@article{PDM_2018_3_a7,
     author = {E. A. Monakhova},
     title = {New families of multiplicative circulant networks},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {76--84},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/}
}
TY  - JOUR
AU  - E. A. Monakhova
TI  - New families of multiplicative circulant networks
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 76
EP  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/
LA  - ru
ID  - PDM_2018_3_a7
ER  - 
%0 Journal Article
%A E. A. Monakhova
%T New families of multiplicative circulant networks
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 76-84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/
%G ru
%F PDM_2018_3_a7
E. A. Monakhova. New families of multiplicative circulant networks. Prikladnaâ diskretnaâ matematika, no. 3 (2018), pp. 76-84. http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/