Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_3_a7, author = {E. A. Monakhova}, title = {New families of multiplicative circulant networks}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {76--84}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/} }
E. A. Monakhova. New families of multiplicative circulant networks. Prikladnaâ diskretnaâ matematika, no. 3 (2018), pp. 76-84. http://geodesic.mathdoc.fr/item/PDM_2018_3_a7/
[1] Monakhova E. A., “Structural and communicative properties of circulant networks”, Prikladnaya Diskretnaya Matematika, 2011, no. 3, 92–115 (in Russian)
[2] Monakhova E. A., “A survey on undirected circulant graphs”, Discr. Math. Algorithms and Appl., 4:1 (2012), 17–47 | MR
[3] Perez-Roses H., “Algebraic and computer-based methods in the undirected degree/diameter problem – a bief survey”, Electronic J. Graph Theory and Appl., 2:2 (2014), 166–190 | MR | Zbl
[4] Erickson A., Stewart I. A., Navaridas J., Kiasari A. E., “The stellar transformation: From interconnection networks to datacenter networks”, Comput. Networks, 113 (2017), 29–45 | DOI
[5] Wong C. K., Coppersmith D., “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21 (1974), 392–402 | DOI | MR | Zbl
[6] Monakhova E., “Optimal triple loop networks with given transmission delay: Topological design and routing”, Intern. Network Optimization Conf. (INOC'2003), Evry–Paris, France, 2003, 410–415
[7] Dougherty R., Faber V., “The degree-diameter problem for several varieties of Cayley graphs, 1: The Abelian case”, SIAM J. Discrete Math., 17:3 (2004), 478–519 | DOI | MR | Zbl
[8] Lewis R., The degree-diameter problem for circulant graphs of degree 8 and 9, 2014, arXiv: 1404.3948v1 | MR
[9] Feria-Puron R., Ryan J., Perez-Roses H., “Searching for large multi-loop networks”, Elec. Notes Disc. Math., 46 (2014), 233–240 | DOI | MR | Zbl
[10] Feria-Puron R., Perez-Roses H., Ryan J., Searching for large circulant graphs, 25 Mar 2015, 31 pp., arXiv: 1503.07357v1[math.CO]
[11] The Degree/Diameter Problem For Circulant Graphs, http://combinatoricswiki.org/wiki/The_Degree_Diameter_Problem_for_Circulant_Graphs
[12] Chen S., Jia X.-D., “Undirected loop networks”, Networks, 23 (1993), 257–260 | DOI | MR | Zbl
[13] Parhami B., “Chordal rings based on symmetric odd-radix number systems”, Proc. Intern. Conf. on Communications in Computing (Las Vegas, NV, June 27–30, 2005), IEEE Press, Los Alamitos, 2005, 196–199
[14] Parhami B., “A class of odd-radix chordal ring networks”, The CS'J J. Comput. Sci. Eng., 4:2–4 (2006), 1–9
[15] Stojmenovic I., “Multiplicative circulant networks. Topological properties and communication algorithms”, Discr. Appl. Math., 77 (1997), 281–305 | DOI | MR | Zbl
[16] Monakhova E. A., “On an extremal family of circulant networks”, J. Appl. Industr. Math., 5:4 (2011), 1–7 | DOI | MR