Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_3_a3, author = {V. A. Roman'kov and A. A. Obzor}, title = {A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {38--45}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_3_a3/} }
TY - JOUR AU - V. A. Roman'kov AU - A. A. Obzor TI - A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms JO - Prikladnaâ diskretnaâ matematika PY - 2018 SP - 38 EP - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2018_3_a3/ LA - ru ID - PDM_2018_3_a3 ER -
V. A. Roman'kov; A. A. Obzor. A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms. Prikladnaâ diskretnaâ matematika, no. 3 (2018), pp. 38-45. http://geodesic.mathdoc.fr/item/PDM_2018_3_a3/
[1] Roman'kov V. A., “A nonlinear decomposition attack”, Groups Complexity Cryptology, 8 (2017), 197–207 | MR
[2] Mahalanobis A., “The Diffie – Hellman key exchange protocol and non-abelian nilpotent groups”, Israel J. Math., 165 (2008), 161–187 | DOI | MR | Zbl
[3] Mahalanobis A., “A simple generalization of El-Gamal cryptosystem to non-abelian groups”, Communications in Algebra, 36 (2008), 3878–3889 | DOI | MR | Zbl
[4] Mahalanobis A., “A simple generalization of El-Gamal cryptosystem to non-abelian groups. II”, Communications in Algebra, 40 (2012), 171–186 | DOI | MR
[5] Roman'kov V. A., Introduction to Cryptography, Lecture Course, Forum Publ., Moscow, 2012, 240 pp. (in Russian)
[6] Roman'kov V. A., Algebraic Cryptography, Dostoevsky Omsk State University Publ., Omsk, 2013, 135 pp. (in Russian)
[7] Roman'kov V. A., “Cryptographic analysis of some known encryption schemes using automorphisms”, Prikladnaya Diskretnaya Matematika, 2013, no. 3(21), 35–51 (in Russian)
[8] Myasnikov A. G., Roman'kov V. A., “A linear decomposition attack”, Groups Complexity Cryptology, 7 (2015), 81–94 | DOI | MR | Zbl
[9] Eick B., Kahrobaei D., Polycyclic groups: A new platform for cryptology?, arXiv: math/0411077[math.GR]
[10] Gryak K. J., Kahrobaei D., “The status of polycyclic group-based cryptography: A survey and open problems”, Groups Complexity Cryptology, 8 (2017), 171–186 | MR
[11] Cavallo B., Kahrobaei D., A family of polycyclic groups over which the conjugacy problem is NP-complete, 19 Mar 2014, 14 pp., arXiv: 1403.4153v2[math. GR] | MR
[12] Macdonald J., Miasnikov A., Nikolaev A., Vassileva S., Logspace and compressed-word computations in nilpotentgroups, 2015, arXiv: 1503.03888[math.GR]
[13] Macdonald J., Miasnikov A., Ovchinnikov D., Low-complexity computations for nilpotent subgroup theorem, 4 Jul. 2017, 23 pp., arXiv: 1706.01092v2[math. GR]
[14] Myasnikov A., Weiß A., “$\mathrm{TC}^0$ circuits for algorithmic problems in nilpotent groups”, 42nd Intern. Symp. MFCS, 2017, Article No. 23 | MR