Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_3_a1, author = {V. A. Idrisova}, title = {On constructing {APN} permutations using subfunctions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {17--27}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_3_a1/} }
V. A. Idrisova. On constructing APN permutations using subfunctions. Prikladnaâ diskretnaâ matematika, no. 3 (2018), pp. 17-27. http://geodesic.mathdoc.fr/item/PDM_2018_3_a1/
[1] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Des. Codes Cryptogr., 15 (2000), 125–156 | DOI | MR
[2] Gold R., “Maximal recursive sequences with 3-valued recursive crosscorrelation functions”, IEEE Trans. Inform. Theory, 14 (1968), 154–156 | DOI | Zbl
[3] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT'93, LNCS, 765, 1994, 55–64 | MR | Zbl
[4] Kasami T., “The weight enumerators for several classes of subcodes of the second order binary Reed–Muller codes”, Inform. Control, 18 (1971), 369–394 | DOI | MR | Zbl
[5] Janwa H., Wilson R., “Hyperplane sections of Fermat varieties in $P^3$ in char. 2 and some applications to cyclic codes”, Proc. AAECC-10, LNCS, 673, 1993, 180–194 | MR | Zbl
[6] Canteaut A., Charpin P., Dobbertin H., “Binary $m$-sequences with three-valued crosscorrelation: a proof of Welch conjecture”, IEEE Trans. Inform. Theory, 46 (2000), 4–8 | DOI | MR | Zbl
[7] Dobbertin H., “Almost perfect nonlinear functions over $\mathrm{GF}(2^n)$: the Welch case”, IEEE Trans. Inform. Theory, 45 (1999), 1271–1275 | DOI | MR | Zbl
[8] Dobbertin H., “Almost perfect nonlinear functions over $\mathrm{GF}(2^n)$: the Niho case”, Inform. Comput., 151 (1999), 57–72 | DOI | MR | Zbl
[9] Hollmann H., Xiang Q., “A proof of the Welch and Niho conjectures on crosscorrelations of binary $m$-sequences”, Finite Fields Appl., 7 (2001), 253–286 | DOI | MR | Zbl
[10] Beth T., Ding C., “On almost perfect nonlinear permutations”, EUROCRYPT'93, LNCS, 765, 1993, 65–76 | MR
[11] Dobbertin H., “Almost perfect nonlinear power functions over $\mathrm{GF}(2^n)$: a new case for $n$ divisible by 5”, Finite Fields and Applications, eds. D. Jungnickel, H. Niederreiter, Springer, Berlin–Heidelberg, 2001, 113–121 | DOI | MR | Zbl
[12] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Mat. Vopr. Kriptogr., 7:4 (2016), 29–50 (in Russian) | DOI | MR
[13] Blondeau C., Nyberg K., “Perfect nonlinear functions and cryptography”, Finite Fields Appl., 32 (2015), 120–147 | DOI | MR | Zbl
[14] Carlet C., “Open questions on nonlinearity and on APN Functions”, LNCS, 9061, 2015, 83–107 | MR | Zbl
[15] Pott A., “Almost perfect and planar functions”, Des. Codes Cryptography, 78:1 (2016), 141–195 | DOI | MR | Zbl
[16] Tuzhilin M. E., “APN-functions”, Prikladnaya Diskretnaya Matematika, 2009, no. 3, 14–20 (in Russian)
[17] Budaghyan L., Construction and Analysis of Cryptographic Functions, Springer International Publishing, 2014, 168 pp. | MR | Zbl
[18] Carlet C., “Vectorial Boolean functions for cryptography”, Ch. 9 of the monograph, Boolean Methods and Models in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, 2010, 398–472 | DOI
[19] Hou X.-D., “Affinity of permutations of $\mathrm F_2^n$”, Discr. Appl. Math., 154, Special Issue: Coding and Cryptography Archive (2006), 313–325 | DOI | Zbl
[20] Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J., “An APN permutation in dimension six”, 9-th Intern. Conf. Finite Fields and Their Applications Fq'09, Contemporary Math., 518, AMS, 2010, 33–42 | DOI | MR | Zbl
[21] Canteaut A., Duval S., Perrin L., “A generalisation of Dillon's APN permutation with the best known differential and linear properties for all fields of size $2^{4k+2}$”, IEEE Trans. Inform. Theory, 63 (2016), 7575–7591 | DOI | MR
[22] Perrin L., Udovenko A., Biryukov A., “Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem”, CRYPTO 2016, Part II, LNCS, 9815, 2016, 93–122 | MR | Zbl
[23] Idrisova V., “On an algorithm generating 2-to-1 APN functions and its applications to ‘the big APN problem’ ”, Cryptography and Communications, 2018, 1–19
[24] Gorodilova A. A., “Characterization of almost perfect nonlinear functions in terms of subfunctions”, Discr. Math. Appl., 26:4 (2016), 193–202 | DOI | MR | Zbl