Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_2_a1, author = {A. V. Cheremushkin}, title = {Linear decomposition of {Boolean} functions into a~sum or a~product of components}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {10--22}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_2_a1/} }
A. V. Cheremushkin. Linear decomposition of Boolean functions into a~sum or a~product of components. Prikladnaâ diskretnaâ matematika, no. 2 (2018), pp. 10-22. http://geodesic.mathdoc.fr/item/PDM_2018_2_a1/
[1] Cheremushkin A. V., “Methods of affine and linear classification of binary functions”, Tr. Diskr. Mat., 4, 2001, 273–314 (in Russian)
[2] Dixon L. E., Linear Groups with Exposition Galois Field Theory, Leipzig, 1901; 2nd ed., Dover Publications, N.Y., 1958
[3] Cheremushkin A. V., “A condition for uniqueness of linear decomposition of a Boolean function into disjunctive sum of indecomposable functions”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2017, no. 10, 55–56 (in Russian) | DOI
[4] Cheremushkin A. V., “On linear decomposition of Boolean functions”, Prikladnaya Diskretnaya Matematika, 2016, no. 1(31), 46–56 (in Russian) | DOI | MR
[5] Cheremushkin A. V., “The uniqueness of the binary function decomposition in a unrepeated product of non-linear irreducible factors”, Lesnoy vestnik, 2004, no. 4(35), 86–90 (in Russian)